Nanomedicine for autophagy modulation in cancer therapy: a clinical perspective

[1]  N. Azizian,et al.  mTOR inhibition attenuates chemosensitivity through the induction of chemotherapy resistant persisters , 2022, Nature Communications.

[2]  F. Greten,et al.  Colon tumour cell death causes mTOR dependence by paracrine P2X4 stimulation , 2022, Nature.

[3]  D. Hardie,et al.  New insights into activation and function of the AMPK , 2022, Nature Reviews Molecular Cell Biology.

[4]  Kinam Park,et al.  Challenging the fundamental conjectures in nanoparticle drug delivery for chemotherapy treatment of solid cancers. , 2022, Advanced drug delivery reviews.

[5]  Yi Lv,et al.  Magnetic hyperthermia induces effective and genuine immunogenic tumor cell death with respect to exogenous heating. , 2022, Journal of materials chemistry. B.

[6]  S. Lowe,et al.  Mutant p53: it’s not all one and the same , 2022, Cell Death & Differentiation.

[7]  N. Usov,et al.  Towards optimal thermal distribution in magnetic hyperthermia , 2021, Scientific Reports.

[8]  R. Liu,et al.  Iron-Dependent Autophagic Cell Death Induced by Radiation in MDA-MB-231 Breast Cancer Cells , 2021, Frontiers in Cell and Developmental Biology.

[9]  G. Salas,et al.  Smart Modification on Magnetic Nanoparticles Dramatically Enhances Their Therapeutic Properties , 2021, Cancers.

[10]  Long Yuan,et al.  Chiral nanomaterials for tumor therapy: autophagy, apoptosis, and photothermal ablation , 2021, Journal of Nanobiotechnology.

[11]  Hebao Yuan,et al.  Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. , 2021, Biomaterials.

[12]  B. Leavitt,et al.  The current landscape of nucleic acid therapeutics , 2021, Nature Nanotechnology.

[13]  P. Martín-Duque,et al.  Combination Chemotherapy with Cisplatin and Chloroquine: Effect of Encapsulation in Micelles Formed by Self-Assembling Hybrid Dendritic–Linear–Dendritic Block Copolymers , 2021, International journal of molecular sciences.

[14]  Masaaki Ito,et al.  Inhibition of Autophagy at Different Stages by ATG5 Knockdown and Chloroquine Supplementation Enhances Consistent Human Disc Cellular Apoptosis and Senescence Induction rather than Extracellular Matrix Catabolism , 2021, International journal of molecular sciences.

[15]  K. Ewert,et al.  Paclitaxel loading in cationic liposome vectors is enhanced by replacement of oleoyl with linoleoyl tails with distinct lipid shapes , 2021, Scientific Reports.

[16]  M. Castellanos,et al.  Albumin-based nanostructures for uveal melanoma treatment. , 2021, Nanomedicine : nanotechnology, biology, and medicine.

[17]  D. Green,et al.  Autophagy in tumour immunity and therapy , 2021, Nature Reviews Cancer.

[18]  A. Girotti,et al.  Advanced nanomedicine and cancer: challenges and opportunities in clinical translation. , 2021, International journal of pharmaceutics.

[19]  Q. Pankhurst,et al.  Deep-tissue localization of magnetic field hyperthermia using pulse sequencing , 2021, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[20]  Nicholas A. Peppas,et al.  Engineering precision nanoparticles for drug delivery , 2020, Nature reviews. Drug discovery.

[21]  Liwen Zhang,et al.  Autophagy inhibitior autophagy-related 7 small interfering RNA and doxorubicin dual-loaded nanostructured lipid carrier to combat multidrug resistance , 2020, Journal of Materials Research.

[22]  Y. Sugita,et al.  Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion , 2020, Nature Structural & Molecular Biology.

[23]  Wei Gao,et al.  What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right. , 2020, ACS nano.

[24]  O. Fiehn,et al.  Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy , 2020, Nature Communications.

[25]  Yunsheng Xia,et al.  Near-infrared optically active Cu2-xS nanocrystals: sacrificial template-ligand exchange integration fabrication and chirality dependent autophagy effects. , 2020, Journal of materials chemistry. B.

[26]  R. Deng,et al.  Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation , 2020, Nature Communications.

[27]  Bo Hu,et al.  Therapeutic siRNA: state of the art , 2020, Signal Transduction and Targeted Therapy.

[28]  I. Hilger,et al.  Iron Oxide Nanoparticles as Carriers for DOX and Magnetic Hyperthermia after Intratumoral Application into Breast Cancer in Mice: Impact and Future Perspectives , 2020, Nanomaterials.

[29]  H. Nakatogawa Mechanisms governing autophagosome biogenesis , 2020, Nature Reviews Molecular Cell Biology.

[30]  D. Gozuacik,et al.  Treatment of breast cancer with autophagy inhibitory microRNAs carried by AGO2-conjugated nanoparticles , 2020, Journal of Nanobiotechnology.

[31]  Xing-jie Liang,et al.  Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy , 2020, Theranostics.

[32]  Xinjing Wang,et al.  Gallbladder Cancer Progression Is Reversed by Nanomaterial-Induced Photothermal Therapy in Combination with Chemotherapy and Autophagy Inhibition , 2020, International journal of nanomedicine.

[33]  M. Ansari,et al.  Therapeutic potential of functionalized siRNA nanoparticles on regression of liver cancer in experimental mice , 2019, Scientific Reports.

[34]  A. Steinkasserer,et al.  siRNA Electroporation to Modulate Autophagy in Herpes Simplex Virus Type 1-Infected Monocyte-Derived Dendritic Cells. , 2019, Journal of visualized experiments : JoVE.

[35]  M. Coumar,et al.  BIRC5/Survivin is a novel ATG12–ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells , 2019, Autophagy.

[36]  Jay V. Shah,et al.  Engineering Tumor-Targeting Nanoparticles as Vehicles for Precision Nanomedicine , 2019, Med one.

[37]  M. van Lookeren Campagne,et al.  Autophagy regulates inflammatory programmed cell death via turnover of RHIM-domain proteins , 2019, eLife.

[38]  Shanshan Zhang,et al.  miR‐34a inhibits progression of neuroblastoma by targeting autophagy‐related gene 5 , 2019, European journal of pharmacology.

[39]  M. Bamburowicz-Klimkowska,et al.  Nanocomposites as biomolecules delivery agents in nanomedicine , 2019, Journal of Nanobiotechnology.

[40]  Quanshun Li,et al.  Phenylboronic acid-functionalized polyamidoamine-mediated miR-34a delivery for the treatment of gastric cancer. , 2019, Biomaterials science.

[41]  Stephanie A. Morris,et al.  NCI Alliance for Nanotechnology in Cancer – from academic research to clinical interventions , 2019, Biomedical Microdevices.

[42]  F. Cecconi,et al.  Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications , 2019, Cell Death & Differentiation.

[43]  Liling Tang,et al.  MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer , 2019, Journal of experimental & clinical cancer research : CR.

[44]  P. Gimotty,et al.  Autophagy Inhibition to Augment mTOR Inhibition: a Phase I/II Trial of Everolimus and Hydroxychloroquine in Patients with Previously Treated Renal Cell Carcinoma , 2019, Clinical Cancer Research.

[45]  Po-Yuan Ke Diverse Functions of Autophagy in Liver Physiology and Liver Diseases , 2019, International journal of molecular sciences.

[46]  M. Molinari,et al.  A selective ER‐phagy exerts procollagen quality control via a Calnexin‐FAM134B complex , 2018, The EMBO journal.

[47]  Ü. Langel,et al.  Tumor gene therapy by systemic delivery of plasmid DNA with cell‐penetrating peptides , 2018, FASEB bioAdvances.

[48]  Á. Somoza,et al.  Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment , 2018, Cellular and Molecular Life Sciences.

[49]  Á. Somoza,et al.  Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment , 2018, Cellular and Molecular Life Sciences.

[50]  Xiaokun Lin,et al.  Rapamycin inhibits proliferation and induces autophagy in human neuroblastoma cells , 2018, Bioscience reports.

[51]  A. Thorburn,et al.  ZZ-dependent regulation of p62/SQSTM1 in autophagy , 2018, Nature Communications.

[52]  Di Chen,et al.  MicroRNA-495-3p inhibits multidrug resistance by modulating autophagy through GRP78/mTOR axis in gastric cancer , 2018, Cell Death & Disease.

[53]  Di Chen,et al.  MicroRNA-495-3p inhibits multidrug resistance by modulating autophagy through GRP78/mTOR axis in gastric cancer , 2018, Cell Death & Disease.

[54]  Jinlan Jiang,et al.  Photothermal exposure of polydopamine-coated branched Au–Ag nanoparticles induces cell cycle arrest, apoptosis, and autophagy in human bladder cancer cells , 2018, International journal of nanomedicine.

[55]  Alfonso Latorre,et al.  Reprogramming Cells for Synergistic Combination Therapy with Nanotherapeutics against Uveal Melanoma , 2018, Biomimetics.

[56]  F. Cecconi,et al.  Rapamycin and fasting sustain autophagy response activated by ischemia/reperfusion injury and promote retinal ganglion cell survival , 2018, Cell Death & Disease.

[57]  T. Fujiwara,et al.  HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. , 2018, Nanomedicine : nanotechnology, biology, and medicine.

[58]  Xiao-ling Fang,et al.  Blocking Autophagic Flux Enhances Iron Oxide Nanoparticle Photothermal Therapeutic Efficiency in Cancer Treatment. , 2018, ACS applied materials & interfaces.

[59]  A. Rauf,et al.  Anticancer potential of quercetin: A comprehensive review , 2018, Phytotherapy research : PTR.

[60]  Xingdong Zhou,et al.  Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion , 2018, Autophagy.

[61]  Long Yuan,et al.  Chiral polymer modified nanoparticles selectively induce autophagy of cancer cells for tumor ablation , 2018, Journal of Nanobiotechnology.

[62]  Da Huo,et al.  Long-term monitoring of tumor-related autophagy in vivo by Fe3O4NO· nanoparticles. , 2018, Biomaterials.

[63]  I. Dikic,et al.  Mechanism and medical implications of mammalian autophagy , 2018, Nature reviews. Molecular cell biology.

[64]  Christopher H. S. Aylett,et al.  Architecture of the human mTORC2 core complex , 2018, eLife.

[65]  Seema Kumari,et al.  Reactive Oxygen Species: A Key Constituent in Cancer Survival , 2018, Biomarker insights.

[66]  R. Ivkov,et al.  Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans , 2018, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[67]  M. Hall,et al.  Architecture of the human mTORC 2 core complex , 2018 .

[68]  M. Wood,et al.  Antisense oligonucleotides: the next frontier for treatment of neurological disorders , 2018, Nature Reviews Neurology.

[69]  T. Tan,et al.  Dual role of autophagy in hallmarks of cancer , 2018, Oncogene.

[70]  L. Qiang,et al.  Co‐delivery of autophagy inhibitor ATG7 siRNA and docetaxel for breast cancer treatment , 2017, Journal of controlled release : official journal of the Controlled Release Society.

[71]  F. He,et al.  The downregulation of ATG4B mediated by microRNA-34a/34c-5p suppresses rapamycin-induced autophagy , 2017, Iranian journal of basic medical sciences.

[72]  Aamir Ahmad,et al.  MicroRNA-34a: A Versatile Regulator of Myriads of Targets in Different Cancers , 2017, International journal of molecular sciences.

[73]  Leilei Xia,et al.  Cuprous oxide nanoparticles inhibit the growth of cervical carcinoma by inducing autophagy , 2017, Oncotarget.

[74]  D. Gozuacik,et al.  Autophagy-Regulating microRNAs and Cancer , 2017, Front. Oncol..

[75]  S. Ito,et al.  Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. , 2017, Seminars in cell & developmental biology.

[76]  Giovanna Butera,et al.  Molecular interplay between mutant p53 proteins and autophagy in cancer cells. , 2017, Biochimica et biophysica acta. Reviews on cancer.

[77]  A. Brenner,et al.  Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors , 2017, Investigational New Drugs.

[78]  M. Donadelli,et al.  Mutant p53 and mTOR/PKM2 regulation in cancer cells , 2016, IUBMB life.

[79]  G. Blandino,et al.  Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition , 2016, Molecular oncology.

[80]  Wei Tao,et al.  Iron Oxide Nanoparticles Induce Autophagosome Accumulation through Multiple Mechanisms: Lysosome Impairment, Mitochondrial Damage, and ER Stress. , 2016, Molecular pharmaceutics.

[81]  J. Dou,et al.  Next-generation proteasome inhibitor MLN9708 sensitizes breast cancer cells to doxorubicin-induced apoptosis , 2016, Scientific Reports.

[82]  Xiujuan Li,et al.  Quaternized Chitosan/Alginate-Fe3O4 Magnetic Nanoparticles Enhance the Chemosensitization of Multidrug-Resistant Gastric Carcinoma by Regulating Cell Autophagy Activity in Mice. , 2016, Journal of biomedical nanotechnology.

[83]  H. Carlisle,et al.  Identification of modulators of autophagic flux in an image-based high content siRNA screen , 2016, Autophagy.

[84]  M. Trauner,et al.  Cancer and liver cirrhosis: implications on prognosis and management , 2016, ESMO Open.

[85]  Dunqiang Ren,et al.  Aptamer-Dendrimer Bioconjugates for Targeted Delivery of miR-34a Expressing Plasmid and Antitumor Effects in Non-Small Cell Lung Cancer Cells , 2015, PloS one.

[86]  Hualu Zhou,et al.  Nanoparticles modulate autophagic effect in a dispersity-dependent manner , 2015, Scientific Reports.

[87]  S. Agarwal,et al.  p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb , 2015, Molecular Cancer Research.

[88]  A. Cuervo,et al.  Lysosomal mTORC2/PHLPP1/Akt Regulate Chaperone-Mediated Autophagy. , 2015, Molecular cell.

[89]  G. Hudes,et al.  Hydroxychloroquine Destabilizes Phospho-S6 in Human Renal Carcinoma Cells , 2015, PloS one.

[90]  F. Chung,et al.  Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF) , 2015, Cell Death and Disease.

[91]  L. Harris,et al.  Phase 1b study of the mammalian target of rapamycin inhibitor sirolimus in combination with nanoparticle albumin–bound paclitaxel in patients with advanced solid tumors , 2015, Cancer.

[92]  S. Howng,et al.  Bcl2L12 with a BH3-like domain in regulating apoptosis and TMZ-induced autophagy: a prospective combination of ABT-737 and TMZ for treating glioma. , 2015, International journal of oncology.

[93]  P. Moseley,et al.  Heat shock response and autophagy—cooperation and control , 2015, Autophagy.

[94]  Q. Zhong Faculty Opinions recommendation of Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. , 2015 .

[95]  F. Slack,et al.  A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer , 2014, Oncogene.

[96]  K. Kelnar,et al.  A qRT-PCR Method for Determining the Biodistribution Profile of a miR-34a Mimic. , 2015, Methods in molecular biology.

[97]  Leaf Huang,et al.  In vivo delivery of miRNAs for cancer therapy: challenges and strategies. , 2015, Advanced drug delivery reviews.

[98]  E. Sausville,et al.  Autophagy modulation: a target for cancer treatment development , 2015, Cancer Chemotherapy and Pharmacology.

[99]  K. Ikeda,et al.  Deletion of the Collagen-specific Molecular Chaperone Hsp47 Causes Endoplasmic Reticulum Stress-mediated Apoptosis of Hepatic Stellate Cells* , 2014, The Journal of Biological Chemistry.

[100]  J. Roth,et al.  EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage , 2014, International journal of nanomedicine.

[101]  G. Mills,et al.  Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. , 2014, Molecular cell.

[102]  T. Curiel,et al.  Combined autophagy and HDAC inhibition , 2014, Autophagy.

[103]  J. Bradner,et al.  Combined autophagy and proteasome inhibition , 2014, Autophagy.

[104]  Y. Ci,et al.  Survivin-2B promotes autophagy by accumulating IKK alpha in the nucleus of selenite-treated NB4 cells , 2014, Cell Death and Disease.

[105]  S. Linder,et al.  Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine , 2014, Autophagy.

[106]  O. Hermanson,et al.  Cracking the survival code , 2014, Autophagy.

[107]  Pellegrini Paola,et al.  The acidic tumor pH neutralizes the autophagy inhibiting activity of chloroquine: Implications for cancer therapies , 2014 .

[108]  Chad A. Mirkin,et al.  Spherical Nucleic Acid Nanoparticle Conjugates as an RNAi-Based Therapy for Glioblastoma , 2013, Science Translational Medicine.

[109]  David Goldstein,et al.  Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. , 2013, The New England journal of medicine.

[110]  Z. Huang,et al.  Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment , 2013, Cell Death and Disease.

[111]  F. Meric-Bernstam,et al.  Weekly nab-Rapamycin in Patients with Advanced Nonhematologic Malignancies: Final Results of a Phase I Trial , 2013, Clinical Cancer Research.

[112]  D. Stainier,et al.  Hepatic stellate cells in liver development, regeneration, and cancer. , 2013, The Journal of clinical investigation.

[113]  Qingsheng Wu,et al.  Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. , 2013, Biomaterials.

[114]  Wei-dong Hu,et al.  Application and interpretation of current autophagy inhibitors and activators , 2013, Acta Pharmacologica Sinica.

[115]  M. Donadelli,et al.  Autophagy induced by p53-reactivating molecules protects pancreatic cancer cells from apoptosis , 2013, Apoptosis.

[116]  M. Donadelli,et al.  Autophagy induced by p53-reactivating molecules protects pancreatic cancer cells from apoptosis , 2012, Apoptosis.

[117]  S. Digumarthy,et al.  A Phase I Study of Erlotinib and Hydroxychloroquine in Advanced Non–Small-Cell Lung Cancer , 2012, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[118]  E. Campo,et al.  Counteracting Autophagy Overcomes Resistance to Everolimus in Mantle Cell Lymphoma , 2012, Clinical Cancer Research.

[119]  M. Socinski,et al.  Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[120]  A. Sepulveda,et al.  Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency , 2012, Proceedings of the National Academy of Sciences.

[121]  E. White Deconvoluting the context-dependent role for autophagy in cancer , 2012, Nature Reviews Cancer.

[122]  Xueyuan Bai,et al.  MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9 , 2013, AGE.

[123]  A. Krogh,et al.  microRNA‐101 is a potent inhibitor of autophagy , 2011, The EMBO journal.

[124]  Xueyuan Bai,et al.  MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9 , 2011, AGE.

[125]  A. Kimmelman,et al.  The dynamic nature of autophagy in cancer. , 2011, Genes & development.

[126]  Yue Zhang,et al.  Autophagy, protein aggregation and hyperthermia: A mini-review , 2011, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[127]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[128]  Ming-Shiang Wu,et al.  Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma , 2010, Autophagy.

[129]  N. Mizushima,et al.  The role of the Atg1/ULK1 complex in autophagy regulation. , 2010, Current opinion in cell biology.

[130]  Kenneth C. Anderson,et al.  Dual Inhibition of Akt/Mammalian Target of Rapamycin Pathway by Nanoparticle Albumin-Bound–Rapamycin and Perifosine Induces Antitumor Activity in Multiple Myeloma , 2010, Molecular Cancer Therapeutics.

[131]  D. McConkey,et al.  Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells , 2009, Oncogene.

[132]  A. Yamamoto,et al.  Autophagic elimination of misfolded procollagen aggregates in the endoplasmic reticulum as a means of cell protection. , 2009, Molecular biology of the cell.

[133]  J. Pouysségur,et al.  Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains , 2009, Molecular and Cellular Biology.

[134]  T. Lafortune,et al.  Dasatinib-induced autophagy is enhanced in combination with temozolomide in glioma , 2009, Molecular Cancer Therapeutics.

[135]  R. Deng,et al.  Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer , 2008, Autophagy.

[136]  R. Motzer,et al.  Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial , 2008, The Lancet.

[137]  Junji Kato,et al.  Resolution of liver cirrhosis using vitamin A–coupled liposomes to deliver siRNA against a collagen-specific chaperone , 2008, Nature Biotechnology.

[138]  Prashant K. Jain,et al.  Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.

[139]  A. Goldberg,et al.  FoxO3 controls autophagy in skeletal muscle in vivo. , 2007, Cell metabolism.

[140]  Peter Schwartz,et al.  Ambra1 regulates autophagy and development of the nervous system , 2007, Nature.

[141]  E. White,et al.  Autophagy suppresses tumor progression by limiting chromosomal instability. , 2007, Genes & development.

[142]  E. White,et al.  Role of Autophagy in Cancer: Management of Metabolic Stress , 2007, Autophagy.

[143]  P. Rose,et al.  Pegylated liposomal doxorubicin in ovarian cancer , 2006, International journal of nanomedicine.

[144]  D. Sabatini,et al.  Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. , 2006, Molecular cell.

[145]  M. Hall,et al.  TOR Signaling in Growth and Metabolism , 2006, Cell.

[146]  Michael Hawkins,et al.  Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[147]  Brian Samuels,et al.  Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[148]  G. Mills,et al.  Targeting Mammalian Target of Rapamycin Synergistically Enhances Chemotherapy-Induced Cytotoxicity in Breast Cancer Cells , 2004, Clinical Cancer Research.

[149]  R. Plasterk,et al.  Dicers at RISC The Mechanism of RNAi , 2004, Cell.

[150]  G C Lubner,et al.  Cell bioscience. , 2004, Bollettino chimico farmaceutico.

[151]  Judy Lieberman,et al.  RNA interference targeting Fas protects mice from fulminant hepatitis , 2003, Nature Medicine.

[152]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[153]  Gregory J. Hannon,et al.  Insight Review Articles , 2022 .

[154]  Takeshi Noda,et al.  Tor, a Phosphatidylinositol Kinase Homologue, Controls Autophagy in Yeast* , 1998, The Journal of Biological Chemistry.