Experimental one-way quantum computing

Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.

[1]  M. Horodecki,et al.  Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .

[2]  M. J. Fitch,et al.  Experimental controlled-NOT logic gate for single photons in the coincidence basis , 2003, quant-ph/0303095.

[3]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[4]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[5]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[6]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[7]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Jian-Wei Pan,et al.  Realization of a photonic controlled-NOT gate sufficient for quantum computation. , 2004, Physical Review Letters.

[9]  Ujjwal Sen,et al.  Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states , 2003 .

[10]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[11]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[12]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[13]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[14]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[15]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[16]  Michael A. Nielsen,et al.  Quantum computation by measurement and quantum memory , 2003 .

[17]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[18]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[19]  Christoph Becher,et al.  Control and Measurement of Three-Qubit Entangled States , 2004, Science.

[20]  Jian-Wei Pan,et al.  Experimental nonlinear sign shift for linear optics quantum computation. , 2003, Physical review letters.

[21]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[22]  Jeremy L O'Brien,et al.  Efficient linear optical quantum computation , 2003 .

[23]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[24]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[25]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[26]  N. Bhattacharya,et al.  Implementation of quantum search algorithm using classical Fourier optics. , 2001, Physical review letters.

[27]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[28]  S. Popescu,et al.  Good dynamics versus bad kinematics: is entanglement needed for quantum computation? , 1999, Physical review letters.

[29]  G. Tóth,et al.  Detecting genuine multipartite entanglement with two local measurements. , 2004, Physical review letters.

[30]  G. D’Ariano,et al.  Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.

[31]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[32]  Hans J. Briegel,et al.  The one-way quantum computer--a non-network model of quantum computation , 2001, quant-ph/0108118.

[33]  Artur Ekert,et al.  Quantum algorithms: entanglement–enhanced information processing , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Andrew Brennan,et al.  Necessary and Sufficient Conditions , 2018, Logic in Wonderland.

[35]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[36]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[37]  Hans-J. Briegel,et al.  Computational model underlying the one-way quantum computer , 2002, Quantum Inf. Comput..

[38]  Jian-Wei Pan,et al.  De Broglie wavelength of a non-local four-photon state , 2003, Nature.

[39]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[40]  Michael A. Nielsen,et al.  Fault-tolerant quantum computation with cluster states , 2005 .

[41]  Dan E. Browne,et al.  Efficient linear optical quantum computation , 2004 .

[42]  Eli Biham,et al.  Quantum computing without entanglement , 2003, Theor. Comput. Sci..

[43]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[44]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[45]  Allan Newton,et al.  Consultancy as a career , 1998 .

[46]  P. Bucksbaum,et al.  Information storage and retrieval through quantum phase , 2000, Science.

[47]  W Dür,et al.  Stability of macroscopic entanglement under decoherence. , 2004, Physical review letters.

[48]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[49]  Seth Lloyd,et al.  Quantum process tomography of the quantum Fourier transform. , 2004, The Journal of chemical physics.

[50]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.