The Growth-Factor Bound for the Bunch-Kaufman Factorization Is Tight
暂无分享,去创建一个
[1] John G. Lewis,et al. Accurate Symmetric Indefinite Linear Equation Solvers , 1999, SIAM J. Matrix Anal. Appl..
[2] J. Bunch,et al. Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .
[3] Jack Dongarra,et al. LAPACK Users' Guide, 3rd ed. , 1999 .
[4] W. Marsden. I and J , 2012 .
[5] John K. Reid,et al. The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.
[6] James Hardy Wilkinson,et al. Error Analysis of Direct Methods of Matrix Inversion , 1961, JACM.
[7] M. SIAMJ.. STABILITY OF THE DIAGONAL PIVOTING METHOD WITH PARTIAL PIVOTING , 1995 .
[8] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[9] Nicholas I. M. Gould,et al. Spectral Analysis of Saddle Point Matrices with Indefinite Leading Blocks , 2009, SIAM J. Matrix Anal. Appl..
[10] Matemática,et al. Society for Industrial and Applied Mathematics , 2010 .
[11] Joseph W. H. Liu. A partial pivoting strategy for sparse symmetric matrix decomposition , 1987, TOMS.
[12] Linda Kaufman,et al. The retraction algorithm for factoring banded symmetric matrices , 2007, Numer. Linear Algebra Appl..
[13] Mark T. Jones,et al. Bunch-Kaufman factorization for real symmetric indefinite banded matrices , 1993 .