Improving whale optimization algorithm for feature selection with a time-varying transfer function

Feature selection is a valuable tool in supervised machine learning research fields, such as pattern recognition or classification problems. Feature selection used to eliminate irrelevant and noise features that adversely affect results. Swarm algorithms are usually used in feature selection problem; these algorithms need transfer functions that change search space from continuous to the discrete. However, transfer functions are the backbone of all binary swarm algorithms. Transfer functions in the current formula cannot provide binary swarm algorithms with a fit balance between exploration and exploitation stages. In this work, a feature selection approach based on the binary whale optimization algorithm with different kinds of updating techniques for the time-varying transfer functions is proposed. To evaluate the performance of the proposed method, three of each chemical and biological binary datasets are used. The results proved that BWOA-TV2 has consistency in feature selection and it gives rise to the high accuracy of the classification with more congruent in the convergence. It worth mentioning that the proposed method is proved advance in performance over competitor optimization algorithms, such as particle swarm optimization (PSO) and firefly optimization (FO) that commonly used in this field.