Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials

Carbon nanotube (CNT) arrays are being considered as thermal interface materials (TIMs). Using a phase sensitive transient thermo-reflectance technique, we measure the thermal conductance of the two interfaces on each side of a vertically aligned CNT array as well as the CNT array itself. We show that the physically bonded interface by van der Waals adhesion has a conductance ~105W/m2K and is the dominant resistance. We also demonstrate that by bonding the free-end CNT tips to a target surface with the help of a thin layer of indium weld, the conductance can be increased to ~106W/m2K making it attractive as a TIM

[1]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[2]  Lokenath Debnath On certain integral transforms and their applications , 1964 .

[3]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[4]  A. F. Mills Basic Heat and Mass Transfer , 1999 .

[5]  Arun Majumdar,et al.  Optical Measurement of Thermal Contact Conductance Between Wafer-Like Thin Solid Samples , 1999 .

[6]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[7]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[8]  Bin Chen,et al.  Multiwalled Carbon Nanotubes by Chemical Vapor Deposition Using Multilayered Metal Catalysts , 2002 .

[9]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[10]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[11]  Ravi Prasher,et al.  Dependence of Thermal Conductivity and Mechanical Rigidity of Particle-Laden Polymeric Thermal Interface Material on Particle Volume Fraction , 2003 .

[12]  Hongjie Dai,et al.  Carbon Nanotubes: Synthesis, Integration, and Properties , 2003 .

[13]  Jun Xu,et al.  Enhanced thermal contact conductance using carbon nanotube arrays , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[14]  Ado Jorio,et al.  UNUSUAL PROPERTIES AND STRUCTURE OF CARBON NANOTUBES , 2004 .

[15]  K. Goodson,et al.  Thermal conductance enhancement of particle-filled thermal interface materials using carbon nanotube inclusions , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[16]  M. Meyyappan,et al.  Thermal Interface Properties of Cu-filled Vertically Aligned Carbon Nanofiber Arrays , 2004 .

[17]  R. Prasher,et al.  Thermal contact resistance of cured gel polymeric thermal interface material , 2004, IEEE Transactions on Components and Packaging Technologies.

[18]  S. Garimella,et al.  Optimization of thermal interface materials for electronics cooling applications , 2004, IEEE Transactions on Components and Packaging Technologies.

[19]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[20]  Thermal Characterization of Two Opposing Carbon Nanotube Arrays Using Diffraction-Limited Infrared Microscopy , 2005 .

[21]  M. Meyyappan,et al.  Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive , 2006 .

[22]  K. Goodson,et al.  3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon , 2006 .