Why classical certification is impossible in a quantum world

We give a simple proof that it is impossible to guarantee the classicality of inputs into any mistrustful quantum cryptographic protocol. The argument illuminates the impossibility of unconditionally secure quantum implementations of essentially classical tasks such as bit commitment with a certified classical committed bit, classical oblivious transfer, and secure classical multi-party computations of secret classical data. It applies to both non-relativistic and relativistic protocols.

[1]  Adrian Kent,et al.  Secure Classical Bit Commitment Using Fixed Capacity Communication Channels , 1999, Journal of Cryptology.

[2]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[3]  Adrian Kent,et al.  A no-summoning theorem in relativistic quantum theory , 2011, Quantum Inf. Process..

[4]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[5]  Adrian Kent,et al.  Private randomness expansion with untrusted devices , 2010, 1011.4474.

[6]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[7]  Stefano Pironio,et al.  Maximally Non-Local and Monogamous Quantum Correlations , 2006, Physical review letters.

[8]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[9]  Adrian Kent,et al.  Unconditionally Secure Bit Commitment , 1998, quant-ph/9810068.

[10]  S. Massar,et al.  Efficient quantum key distribution secure against no-signalling eavesdroppers , 2006, quant-ph/0605246.

[11]  Adrian Kent,et al.  Unconditionally secure bit commitment with flying qudits , 2011, ArXiv.

[12]  Adrian Kent,et al.  Impossibility of unconditionally secure commitment of a certified classical bit , 2000 .

[13]  Renato Renner,et al.  Device-Independent Quantum Key Distribution with Commuting Measurements , 2010, ArXiv.

[14]  Andreas J. Winter,et al.  Unconditional security of key distribution from causality constraints , 2006, ArXiv.

[15]  Renato Renner,et al.  Efficient Device-Independent Quantum Key Distribution , 2010, EUROCRYPT.

[16]  Esther Hanggi,et al.  Quantum Cryptography Based Solely on Bell's Theorem , 2009 .

[17]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[18]  A. Acín,et al.  Secure device-independent quantum key distribution with causally independent measurement devices. , 2010, Nature communications.

[19]  Lluis Masanes,et al.  Universally-composable privacy amplification from causality constraints , 2008, Physical review letters.

[20]  Adrian Kent,et al.  Quantum Tagging with Cryptographically Secure Tags , 2010, arXiv.org.

[21]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[22]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[23]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[24]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[25]  V. Scarani,et al.  Device-independent quantum key distribution secure against collective attacks , 2009, 0903.4460.

[26]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[27]  T. Rudolph The Laws of Physics and Cryptographic Security , 2002, quant-ph/0202143.

[28]  Adrian Kent Unconditionally Secure Commitment of a Certified Classical Bit is Impossible , 1999 .

[29]  H. Lo,et al.  Insecurity of position-based quantum-cryptography protocols against entanglement attacks , 2010, 1009.2256.

[30]  Adrian Kent,et al.  Location-Oblivious Data Transfer with Flying Entangled Qudits , 2011, ArXiv.

[31]  Adrian Kent,et al.  Variable Bias Coin Tossing , 2005, ArXiv.

[32]  M. Mckague,et al.  Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices , 2009, 0908.0503.

[33]  Robert A. Malaney,et al.  Location-dependent communications using quantum entanglement , 2010, 1003.0949.

[34]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.