Long-range inhibitory intersection of a retrosplenial thalamocortical circuit by apical tuft-targeting CA1 neurons

Hippocampus, granular retrosplenial cortex (RSCg), and anterior thalamic nuclei (ATN) interact to mediate diverse cognitive functions. To identify cellular mechanisms underlying hippocampo–thalamo–retrosplenial interactions, we investigated the potential circuit suggested by projections to RSCg layer 1 (L1) from GABAergic CA1 neurons and ATN. We find that CA1→RSCg projections stem from GABAergic neurons with a distinct morphology, electrophysiology, and molecular profile. Their long-range axons inhibit L5 pyramidal neurons in RSCg via potent synapses onto apical tuft dendrites in L1. These inhibitory inputs intercept L1-targeting thalamocortical excitatory inputs from ATN to coregulate RSCg activity. Subicular axons, in contrast, excite proximal dendrites in deeper layers. Short-term plasticity differs at each connection. Chemogenetically abrogating CA1→RSCg or ATN→RSCg connections oppositely affects the encoding of contextual fear memory. Our findings establish retrosplenial-projecting CA1 neurons as a distinct class of long-range dendrite-targeting GABAergic neuron and delineate an unusual cortical circuit specialized for integrating long-range inhibition and thalamocortical excitation.Apical tuft dendrites of pyramidal neurons in retrosplenial cortex receive inhibition from a class of CA1 GABAergic neurons with long-range layer 1-targeting axons; this inhibition opposes matrix-type thalamocortical excitation from anterior thalamus.

[1]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[2]  K. Svoboda,et al.  A Cellular Resolution Map of Barrel Cortex Activity during Tactile Behavior , 2015, Neuron.

[3]  E. Maguire,et al.  What does the retrosplenial cortex do? , 2009, Nature Reviews Neuroscience.

[4]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[5]  R. Llinás,et al.  Electrophysiology of mammalian thalamic neurones in vitro , 1982, Nature.

[6]  Anna L. Powell,et al.  What does spatial alternation tell us about retrosplenial cortex function? , 2015, Front. Behav. Neurosci..

[7]  J. T. Erichsen,et al.  Segregation of parallel inputs to the anteromedial and anteroventral thalamic nuclei of the rat , 2013, The Journal of comparative neurology.

[8]  Naoki Yamawaki,et al.  GABAergic mechanisms regulated by miR-33 encode state-dependent fear , 2015, Nature Neuroscience.

[9]  Jonathan L. C. Lee,et al.  The retrosplenial cortex is involved in the formation of memory for context and trace fear conditioning , 2015, Neurobiology of Learning and Memory.

[10]  K. Rockland,et al.  Honeycomb-Like Mosaic at the Border of Layers 1 and 2 in the Cerebral Cortex , 2003, The Journal of Neuroscience.

[11]  J K Chapin,et al.  A major direct GABAergic pathway from zona incerta to neocortex. , 1990, Science.

[12]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[13]  Anirvan Ghosh,et al.  Chemogenetic Synaptic Silencing of Neural Circuits Localizes a Hypothalamus→Midbrain Pathway for Feeding Behavior , 2014, Neuron.

[14]  Steven P. Wilson,et al.  Designer Receptors Show Role for Ventral Pallidum Input to Ventral Tegmental Area in Cocaine Seeking , 2014, Nature Neuroscience.

[15]  Kenneth D Harris,et al.  A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity , 2014, eLife.

[16]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[17]  T. van Groen,et al.  Dendritic bundling in layer I of granular retrosplenial cortex: Intracellular labeling and selectivity of innervation , 1990, The Journal of comparative neurology.

[18]  D. Rusakov,et al.  GABAB Receptor Modulation of Feedforward Inhibition through Hippocampal Neurogliaform Cells , 2008, The Journal of Neuroscience.

[19]  R. Baughman,et al.  GABAergic Transcallosal Neurons in Developing Rat Neocortex , 1997, The European journal of neuroscience.

[20]  Kenneth D Harris,et al.  Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics , 2017, bioRxiv.

[21]  D. Chklovskii,et al.  Neurogeometry and potential synaptic connectivity , 2005, Trends in Neurosciences.

[22]  Brian J. Wiltgen,et al.  Cortical Representations Are Reinstated by the Hippocampus during Memory Retrieval , 2014, Neuron.

[23]  Marco Capogna,et al.  Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area , 2005, The Journal of Neuroscience.

[24]  Benjamin A. Suter,et al.  Reciprocal Interareal Connections to Corticospinal Neurons in Mouse M1 and S2 , 2015, The Journal of Neuroscience.

[25]  L. Looger,et al.  A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons , 2016, Neuron.

[26]  Caroline A. Johnson,et al.  A direct GABAergic output from the basal ganglia to frontal cortex , 2014, Nature.

[27]  Naoki Yamawaki,et al.  Synaptic Circuit Organization of Motor Corticothalamic Neurons , 2015, The Journal of Neuroscience.

[28]  Farzan Nadim,et al.  Functional roles of short-term synaptic plasticity with an emphasis on inhibition , 2017, Current Opinion in Neurobiology.

[29]  H. Shibata,et al.  Efferent projections from the anterior thalamic nuclei to the cingulate cortex in the rat , 1993, The Journal of comparative neurology.

[30]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[31]  Menno Witter,et al.  The Retrosplenial Cortex: Intrinsic Connectivity and Connections with the (Para)Hippocampal Region in the Rat. An Interactive Connectome , 2011, Front. Neuroinform..

[32]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[33]  Toshiki Tani,et al.  Single Axon Branching Analysis in Rat Thalamocortical Projection from the Anteroventral Thalamus to the Granular Retrosplenial Cortex , 2011, Front. Neuroanat..

[34]  D. Bucci,et al.  Contributions of the retrosplenial and posterior parietal cortices to cue-specific and contextual fear conditioning. , 2008, Behavioral neuroscience.

[35]  Naoki Yamawaki,et al.  A Corticocortical Circuit Directly Links Retrosplenial Cortex to M2 in the Mouse , 2016, The Journal of Neuroscience.

[36]  N. Yamawaki,et al.  Role of retrosplenial cortex in processing stress-related context memories. , 2018, Behavioral neuroscience.

[37]  Kathleen S Rockland,et al.  GABAergic projections from the hippocampus to the retrosplenial cortex in the rat , 2007, The European journal of neuroscience.

[38]  Wade G. Regehr,et al.  Achieving High-Frequency Optical Control of Synaptic Transmission , 2014, The Journal of Neuroscience.

[39]  Jason Tucciarone,et al.  Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex , 2016, Neuron.

[40]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[41]  W. Regehr Short-term presynaptic plasticity. , 2012, Cold Spring Harbor perspectives in biology.

[42]  Tomokazu Konishi,et al.  Pyramidal neurons in the superficial layers of rat retrosplenial cortex exhibit a late-spiking firing property , 2012, Brain Structure and Function.

[43]  G. Shepherd,et al.  Differential Contributions of Glutamatergic Hippocampal→Retrosplenial Cortical Projections to the Formation and Persistence of Context Memories. , 2019, Cerebral cortex.

[44]  F. Fujiyama,et al.  Demonstration of long‐range GABAergic connections distributed throughout the mouse neocortex , 2005, The European journal of neuroscience.

[45]  T. Murohara,et al.  Neuron-derived Neurotrophic Factor Functions as a Novel Modulator That Enhances Endothelial Cell Function and Revascularization Processes* , 2014, The Journal of Biological Chemistry.

[46]  R. Llinás,et al.  Coherent 40-Hz oscillation characterizes dream state in humans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[47]  P. Somogyi,et al.  Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus , 2007, The Journal of Neuroscience.

[48]  Christof Koch,et al.  Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.

[49]  Giorgio A. Ascoli,et al.  Weighing the Evidence in Peters’ Rule: Does Neuronal Morphology Predict Connectivity? , 2017, Trends in Neurosciences.

[50]  P. Somogyi,et al.  Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum , 2018, eLife.

[51]  T. van Groen,et al.  Projections from the anterodorsal and anteroveniral nucleus of the thalamus to the limbic cortex in the rat , 1995, The Journal of comparative neurology.

[52]  Steven Sparenborg,et al.  An Executive Function of the Hippocampus Pathway Selection for Thalamic Neuronal Significance Code , 1986 .

[53]  B. Vogt,et al.  Interconnections Between the Thalamus and Retrosplenial Cortex in the Rodent Brain , 1993 .

[54]  J. Magee,et al.  Pathway Interactions and Synaptic Plasticity in the Dendritic Tuft Regions of CA1 Pyramidal Neurons , 2009, Neuron.

[55]  Chris J. McBain,et al.  Neurogliaform cells in cortical circuits , 2015, Nature Reviews Neuroscience.

[56]  M. Gabriel,et al.  Training-stage related neuronal plasticity in limbic thalamus and cingulate cortex during learning: a possible key to mnemonic retrieval , 1991, Behavioural Brain Research.

[57]  Alcino J. Silva,et al.  Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory , 2018, Nature Communications.

[58]  Michael J. Higley,et al.  Localized GABAergic inhibition of dendritic Ca2+ signalling , 2014, Nature Reviews Neuroscience.

[59]  C. Ranganath,et al.  Two cortical systems for memory-guided behaviour , 2012, Nature Reviews Neuroscience.

[60]  A. Kriegstein,et al.  A GABAergic projection from the zona incerta to cortex promotes cortical neuron development , 2015, Science.

[61]  Arno C. Schmitt,et al.  Robustness of sensory-evoked excitation is increased by inhibitory inputs to distal apical tuft dendrites , 2015, Proceedings of the National Academy of Sciences.

[62]  K. Rockland,et al.  Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus , 2010, The Journal of Neuroscience.

[63]  Konrad Paul Kording,et al.  Scaling of Optogenetically Evoked Signaling in a Higher-Order Corticocortical Pathway in the Anesthetized Mouse , 2018, Frontiers in Systems Neuroscience.

[64]  P. Golshani,et al.  Direct Reactivation of a Coherent Neocortical Memory of Context , 2014, Neuron.

[65]  Vijay Iyer,et al.  Ephus: Multipurpose Data Acquisition Software for Neuroscience Experiments , 2010, Front. Neural Circuits.

[66]  Jelena Radulovic,et al.  NMDA Receptors in Retrosplenial Cortex Are Necessary for Retrieval of Recent and Remote Context Fear Memory , 2011, The Journal of Neuroscience.

[67]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[68]  Charles J. Wilson,et al.  Cortical Circuits of Callosal GABAergic Neurons , 2018, Cerebral cortex.

[69]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[70]  M. W. Brown,et al.  Episodic memory, amnesia, and the hippocampal–anterior thalamic axis , 1999, Behavioral and Brain Sciences.

[71]  R. Llinás,et al.  Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Ian R. Wickersham,et al.  Combining Optogenetics and Electrophysiology to Analyze Projection Neuron Circuits. , 2016, Cold Spring Harbor protocols.