A kilonova as the electromagnetic counterpart to a gravitational-wave source

Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of −1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90–140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

Larry Denneau | Christopher W. Stubbs | N. A. Walton | M. Smith | Stuart A. Sim | A. Pastorello | M. Gromadzki | Z. P. Kostrzewa-Rutkowska | Cosimo Inserra | Erkki Kankare | John L. Tonry | G. Cannizzaro | Jesper Sollerman | Peter G. Jonker | A. De Cia | Francesco Taddia | R. J. Wainscoat | A. Rest | Franz E. Bauer | Brian Stalder | Arne Rau | O. Yaron | Mark Sullivan | Lorraine Hanlon | Simon T. Hodgkin | Heather Flewelling | A. Franckowiak | Morgan Fraser | C. Ashall | C. Barbarino | M. T. Botticella | M. Dennefeld | Nancy Elias-Rosa | Santiago González-Gaitán | Phil A. James | Anders Jerkstrand | Rubina Kotak | Seppo Mattila | M. L. Pumo | Łukasz Wyrzykowski | M. Della Valle | H. Weiland | O. McBrien | Ferdinando Patat | A. N. Heinze | T.-W. Chen | J. Greiner | Isobel M. Hook | Avishay Gal-Yam | Giorgos Leloudas | Jakob Nordin | Patricia Schady | Kenneth Carter Chambers | David Homan | Lluís Galbany | S. Klose | Hanindyo Kuncarayakti | Christopher Waters | S. J. Prentice | M. R. Magee | F. Onori | A. Hamanowicz | Eugene A. Magnier | C. Agliozzo | Michael W. Coughlin | A. Martin-Carrillo | B. van Soelen | Aleksandar Cikota | M. Kowalski | Luke J. Shingles | T. Schweyer | T. B. Lowe | Wolfgang Kerzendorf | C. Frohmaier | Thomas Krühler | Ph. Podsiadlowski | W. E. Kerzendorf | Stephen J. Smartt | J. D. Lyman | Zach Cano | I. Hook | R. Kotak | K. Maguire | S. Smartt | M. Sullivan | J. Sollerman | A. D. Cia | P. Schady | D. Young | M. Coughlin | A. Franckowiak | M. Kowalski | C. Stubbs | A. Rest | K. Chambers | H. Flewelling | J. Tonry | R. Wainscoat | S. González-Gaitán | R. Firth | L. Galbany | Z. Cano | J. Greiner | J. Lyman | A. Gal-yam | L. Denneau | E. Magnier | M. Huber | C. Waters | M. Botticella | M. Kromer | J. Nordin | S. Taubenberger | S. Hodgkin | G. Leloudas | F. Taddia | C. Ashall | R. Cartier | A. Cikota | M. Valle | J. Harmanen | C. Inserra | E. Kankare | H. Kuncarayakti | S. Mattila | G. Pignata | S. Prentice | M. Smith | A. Heinze | B. Stalder | Kenneth W. Smith | H. Weiland | A. Rau | N. Walton | O. Yaron | A. Pastorello | N. Elias-Rosa | K. Rybicki | L. Salmon | L. Hanlon | G. Terreran | M. Bulla | C. Angus | G. Dimitriadis | L. Izzo | C. Frohmaier | L. Dessart | F. Patat | P. Podsiadlowski | T. Reynolds | M. Fraser | M. Gromadzki | G. Cannizzaro | P. Jonker | Z. Kostrzewa-Rutkowska | Ł. Wyrzykowski | P. James | A. Lawrence | S. Klose | F. Bauer | B. V. Soelen | C. Agliozzo | K. E. Heintz | P. Wiseman | S. Sim | A. Jerkstrand | A. Müller | I. Manulis | Andy Lawrence | M. Willman | M. Dennefeld | Rupak Roy | Ken W. Smith | Kate Maguire | Giusto Pignata | A. Martin-Carrillo | I. Manulis | M. Magee | J. Harmanen | T. Reynolds | I. Seitenzahl | Alfred Müller | A. Nicuesa Guelbenzu | M. Berton | A. Hamanowicz | J. Bulger | A. N. Guelbenzu | T. Krühler | J. Palmerio | T.-W. Chen | Luc Dessart | Ivo R. Seitenzahl | C. Barbarino | T. Lowe | M. Willman | A. Razza | M. E. Huber | David Young | Joseph P. Anderson | C. R. Angus | M. Bulla | J. Bulger | R. Cartier | Philip Clark | G. Dimitriadis | R. E. Firth | A. Flörs | C. P. Gutiérrez | M. Hernández | Luca Izzo | Markus Kromer | D. O’Neill | J. T. Palmerio | A. Razza | Ashley J. Ruiter | Krzysztof A. Rybicki | L. Salmon | André Schultz | H. Szegedi | Stefano Taubenberger | Giacomo Terreran | J. Vos | P. Wiseman | D. Wright | C. Gutiérrez | A. Ruiter | R. Roy | P. Clark | O. McBrien | F. Onori | T. Schweyer | M. D. Valle | H. Szegedi | D. Wright | A. Schultz | J. Anderson | M. Berton | L. Shingles | J. Vos | A. Flörs | D. Homan | D. O’Neill | M. Hernández | A. Cia | B. Soelen | D. Young | F. Bauer | M. Sullivan | T. Krühler | K. Heintz

[1]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[2]  Saurabh W. Jha,et al.  The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck , 2017, 1710.05854.

[3]  A. Pastorello,et al.  SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.

[4]  P. A. Price,et al.  The Pan-STARRS Data-processing System , 2016, The Astrophysical Journal Supplement Series.

[5]  W. E. Kerzendorf,et al.  A spectral synthesis code for rapid modelling of supernovae , 2014, 1401.5469.

[6]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[7]  K. Maguire,et al.  Complexity in the light curves and spectra of slow-evolving superluminous supernovae , 2017, 1701.00941.

[8]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[9]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[10]  D. A. Kann,et al.  GRB hosts through cosmic time - VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1 , 2015, 1505.06743.

[11]  Y. Wang,et al.  Upper limits on the rates of binary neutron star and neutron-star--black-hole mergers from Advanced LIGO's first observing run , 2016, 1607.07456.

[12]  E. Bozzo,et al.  INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817 , 2017, 1710.05449.

[13]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[14]  S. Smartt,et al.  Toward Rapid Transient Identification and Characterization of Kilonovae , 2017, 1708.07714.

[15]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[16]  Armin Rest,et al.  Observations of the GRB Afterglow ATLAS17aeu and Its Possible Association with GW 170104 , 2017, 1706.00175.

[17]  Masaru Shibata,et al.  PRODUCTION OF ALL THE r-PROCESS NUCLIDES IN THE DYNAMICAL EJECTA OF NEUTRON STAR MERGERS , 2014, 1402.7317.

[18]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[19]  Redshift-Distance Survey of Early-Type Galaxies: Spectroscopic Data , 2003, astro-ph/0308357.

[20]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[21]  R. Nichol,et al.  A Search for Kilonovae in the Dark Energy Survey , 2016, 1611.08052.

[22]  Meng-Ru Wu,et al.  RADIOACTIVITY AND THERMALIZATION IN THE EJECTA OF COMPACT OBJECT MERGERS AND THEIR IMPACT ON KILONOVA LIGHT CURVES , 2016, 1605.07218.

[23]  I. Karachentsev,et al.  Galaxy groups and clouds in the local (z∼ 0.01) Universe , 2010, 1011.6277.

[24]  The Distance to SN 1999em from the Expanding Photosphere Method , 2001, astro-ph/0105006.

[25]  Richard Walters,et al.  RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE “.Ia” EXPLOSION , 2010, 1009.0960.

[26]  B. Metzger,et al.  Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers , 2016, 1607.05290.

[27]  P. Brown,et al.  THE FAST AND FURIOUS DECAY OF THE PECULIAR TYPE Ic SUPERNOVA 2005ek , 2013, 1306.2337.

[28]  Rodrigo Fernandez,et al.  Kilonova light curves from the disc wind outflows of compact object mergers , 2014, 1411.3726.

[29]  K. Maguire,et al.  Hubble Space Telescope spectra of the type Ia supernova SN 2011fe: a tail of low-density, high-velocity material with Z < Z⊙ , 2013, 1305.2356.

[30]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[31]  S. Rosswog,et al.  On the astrophysical robustness of the neutron star merger r-process , 2012, 1206.2379.

[32]  K. Maguire,et al.  LONG-DURATION SUPERLUMINOUS SUPERNOVAE AT LATE TIMES , 2016, 1608.02994.

[33]  B. Gibson,et al.  Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914 , 2016, 1602.04156.

[34]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[35]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[36]  R. J. Wainscoat,et al.  Pan-STARRS Pixel Processing: Detrending, Warping, Stacking , 2016, The Astrophysical Journal Supplement Series.

[37]  P. A. Price,et al.  Pan-STARRS Pixel Analysis: Source Detection and Characterization , 2016, The Astrophysical Journal Supplement Series.

[38]  R. J. Wainscoat,et al.  Pan-STARRS Photometric and Astrometric Calibration , 2016, The Astrophysical Journal Supplement Series.

[39]  S. Savaglio,et al.  The 2175 Å Dust Feature in a Gamma-Ray Burst Afterglow at Redshift 2.45 , 2008, 0805.2824.

[40]  M. Sullivan,et al.  PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.

[41]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[42]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[43]  A. J. Levan,et al.  A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B , 2013, Nature.

[44]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[45]  Masaomi Tanaka,et al.  Properties of Kilonovae from Dynamical and Post-merger Ejecta of Neutron Star Mergers , 2017, 1708.09101.

[46]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants , 2000, astro-ph/0005188.

[47]  D. Kasen,et al.  OPACITIES AND SPECTRA OF THE r-PROCESS EJECTA FROM NEUTRON STAR MERGERS , 2013, 1303.5788.

[48]  J. Sollerman,et al.  Detectability of compact binary merger macronovae , 2016, 1611.09822.

[49]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[50]  M. Honsberg,et al.  GROND—a 7-Channel Imager , 2008, 0801.4801.

[51]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2008, 0809.0403.

[52]  K. Maguire,et al.  OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION , 2014, 1410.6473.

[53]  Jennifer Barnes,et al.  EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS , 2013, 1303.5787.

[54]  Mohan Ganeshalingam,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate–size relation, and the rates as a function of galaxy Hubble type and colour , 2010, 1006.4613.

[55]  E. Chatzopoulos,et al.  GENERALIZED SEMI-ANALYTICAL MODELS OF SUPERNOVA LIGHT CURVES , 2011, 1111.5237.

[56]  John L. Tonry,et al.  An Early Warning System for Asteroid Impact , 2010, 1011.1028.

[57]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[58]  E. O. Ofek,et al.  A faint type of supernova from a white dwarf with a helium-rich companion , 2009, Nature.

[59]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[60]  P. K. Kuroda Synthesis of the Elements in Stars , 1982 .

[61]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[62]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[63]  K. Hotokezaka,et al.  RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA , 2013, 1306.3742.

[64]  P. Dokkum Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[65]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[66]  K. Maguire,et al.  PESSTO monitoring of SN 2012hn: Further heterogeneity among faint type I supernovae , 2013, 1302.2983.