Sentiment Analysis

[1]  Enhong Chen,et al.  Sentiment Classification by Leveraging the Shared Knowledge from a Sequence of Domains , 2019, DASFAA.

[2]  Xin Li,et al.  Aspect Term Extraction with History Attention and Selective Transformation , 2018, IJCAI.

[3]  Xiaoyan Zhu,et al.  Sentiment Analysis by Capsules , 2018, WWW.

[4]  Shuai Wang,et al.  Deep learning for sentiment analysis: A survey , 2018, WIREs Data Mining Knowl. Discov..

[5]  Mirella Lapata,et al.  Multiple Instance Learning Networks for Fine-Grained Sentiment Analysis , 2017, TACL.

[6]  Tara Black,et al.  The language of evaluation , 2017 .

[7]  Siu Cheung Hui,et al.  Dyadic Memory Networks for Aspect-based Sentiment Analysis , 2017, CIKM.

[8]  Houfeng Wang,et al.  Interactive Attention Networks for Aspect-Level Sentiment Classification , 2017, IJCAI.

[9]  Yu Zhang,et al.  End-to-End Adversarial Memory Network for Cross-domain Sentiment Classification , 2017, IJCAI.

[10]  Jun Yan,et al.  Sentence-level Sentiment Classification with Weak Supervision , 2017, SIGIR.

[11]  Yueting Zhuang,et al.  Microblog Sentiment Classification via Recurrent Random Walk Network Learning , 2017, IJCAI.

[12]  Xiaoyan Zhu,et al.  Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification , 2017, ACM Trans. Inf. Syst..

[13]  Cheng Li,et al.  Deep Memory Networks for Attitude Identification , 2017, WSDM.

[14]  Razvan Pascanu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[15]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Indexing , 1999, SIGIR Forum.

[16]  Zoe Borovsky,et al.  Topic Modeling , 2017, Encyclopedia of Machine Learning and Data Mining.

[17]  Qingming Huang,et al.  Dependency Exploitation: A Unified CNN-RNN Approach for Visual Emotion Recognition , 2017, IJCAI.

[18]  Erik Cambria,et al.  Aspect extraction for opinion mining with a deep convolutional neural network , 2016, Knowl. Based Syst..

[19]  Navneet Kaur,et al.  Opinion mining and sentiment analysis , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

[20]  Erik Cambria,et al.  Sentic Computing , 2015, Cognitive Computation.

[21]  Tom Postmes,et al.  “More Than Words” , 2014, Personality & social psychology bulletin.

[22]  Michal Campr Contrastive Summarization , 2014 .

[23]  Stephen J. Roberts,et al.  Predicting Economic Indicators from Web Text Using Sentiment Composition , 2014 .

[24]  Rada Mihalcea,et al.  Sentiment Analysis , 2014, Encyclopedia of Social Network Analysis and Mining.

[25]  J. Hietanen,et al.  Bodily maps of emotions , 2013, Proceedings of the National Academy of Sciences.

[26]  Xiaohui Yu,et al.  Sentiment analysis of sentences with modalities , 2013, UnstructureNLP@CIKM.

[27]  Arjun Mukherjee,et al.  Discovering coherent topics using general knowledge , 2013, CIKM.

[28]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[29]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[30]  Reza Zafarani,et al.  Connecting users across social media sites: a behavioral-modeling approach , 2013, KDD.

[31]  Abhinav Kumar,et al.  Spotting opinion spammers using behavioral footprints , 2013, KDD.

[32]  W. Bruce Croft,et al.  Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) , 2013 .

[33]  Chu-Ren Huang,et al.  DETECTING EMOTION CAUSES WITH A LINGUISTIC RULE‐BASED APPROACH 1 , 2013, Comput. Intell..

[34]  Phil Blunsom,et al.  The Role of Syntax in Vector Space Models of Compositional Semantics , 2013, ACL.

[35]  Peter D. Turney Thumbs Up, Thumbs Down , 2013, Journal of Cell Science.

[36]  Huan Liu,et al.  Exploiting social relations for sentiment analysis in microblogging , 2013, WSDM.

[37]  João Francisco Valiati,et al.  Document-level sentiment classification: An empirical comparison between SVM and ANN , 2013, Expert Syst. Appl..

[38]  A. Damasio,et al.  The nature of feelings: evolutionary and neurobiological origins , 2013, Nature Reviews Neuroscience.

[39]  Christopher S. G. Khoo,et al.  Sentiment analysis of online news text: a case study of appraisal theory , 2012, Online Inf. Rev..

[40]  Gao Cong,et al.  One seed to find them all: mining opinion features via association , 2012, CIKM.

[41]  Gao Cong,et al.  Topic-driven reader comments summarization , 2012, CIKM.

[42]  Philip S. Yu,et al.  Review spam detection via temporal pattern discovery , 2012, KDD.

[43]  Arjun Mukherjee,et al.  Mining contentions from discussions and debates , 2012, KDD.

[44]  Arjun Mukherjee,et al.  Spotting fake reviewer groups in consumer reviews , 2012, WWW.

[45]  Joseph E LeDoux Rethinking the Emotional Brain , 2012, Neuron.

[46]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields , 2010, Found. Trends Mach. Learn..

[47]  Haizhou Li,et al.  A cross-domain adaptation method for sentiment classification using probabilistic latent analysis , 2011, CIKM '11.

[48]  Yanjun Qi,et al.  Sentiment classification based on supervised latent n-gram analysis , 2011, CIKM '11.

[49]  Xian-Sheng Hua,et al.  Interactive Image Search by Color Map , 2011, TIST.

[50]  Evimaria Terzi,et al.  Selecting a comprehensive set of reviews , 2011, KDD.

[51]  David Buttler,et al.  Latent topic feedback for information retrieval , 2011, KDD.

[52]  Meng Wang,et al.  Product comparison using comparative relations , 2011, SIGIR.

[53]  Lei Zhang,et al.  Entity set expansion in opinion documents , 2011, HT '11.

[54]  Diana Inkpen,et al.  Using a Heterogeneous Dataset for Emotion Analysis in Text , 2011, Canadian Conference on AI.

[55]  Hua Xu,et al.  Constrained LDA for Grouping Product Features in Opinion Mining , 2011, PAKDD.

[56]  Oscar Täckström,et al.  Discovering Fine-Grained Sentiment with Latent Variable Structured Prediction Models , 2011, ECIR.

[57]  Junhui Wang,et al.  Detecting group review spam , 2011, WWW.

[58]  Yue Lu,et al.  Automatic construction of a context-aware sentiment lexicon: an optimization approach , 2011, WWW.

[59]  Chun Chen,et al.  Opinion Word Expansion and Target Extraction through Double Propagation , 2011, CL.

[60]  Zhen Hai,et al.  Implicit Feature Identification via Co-occurrence Association Rule Mining , 2011, CICLing.

[61]  Alice H. Oh,et al.  Aspect and sentiment unification model for online review analysis , 2011, WSDM '11.

[62]  Hua Xu,et al.  Clustering product features for opinion mining , 2011, WSDM '11.

[63]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..

[64]  Panagiotis G. Ipeirotis,et al.  Estimating the Helpfulness and Economic Impact of Product Reviews: Mining Text and Reviewer Characteristics , 2010, IEEE Transactions on Knowledge and Data Engineering.

[65]  R. Bodin A Sentimental Education , 2011 .

[66]  Get Out the Vote , 2011 .

[67]  P. Gloor,et al.  Predicting Stock Market Indicators Through Twitter “I hope it is not as bad as I fear” , 2011 .

[68]  Himabindu Lakkaraju,et al.  Exploiting Coherence for the Simultaneous Discovery of Latent Facets and associated Sentiments , 2011, SDM.

[69]  Brian D. Davison,et al.  Adversarial Web Search , 2011, Found. Trends Inf. Retr..

[70]  Yulan He Learning sentiment classification model from labeled features , 2010, CIKM '10.

[71]  Ee-Peng Lim,et al.  Detecting product review spammers using rating behaviors , 2010, CIKM.

[72]  Ee-Peng Lim,et al.  Finding unusual review patterns using unexpected rules , 2010, CIKM.

[73]  Clement T. Yu,et al.  Construction of a sentimental word dictionary , 2010, CIKM '10.

[74]  David B. Dunson,et al.  Probabilistic topic models , 2012, Commun. ACM.

[75]  Dimitrios Gunopulos,et al.  Efficient Confident Search in Large Review Corpora , 2010, ECML/PKDD.

[76]  Yue Lu,et al.  Latent aspect rating analysis on review text data: a rating regression approach , 2010, KDD.

[77]  Derek Greene,et al.  Distortion as a validation criterion in the identification of suspicious reviews , 2010, SOMA '10.

[78]  Yue Lu,et al.  Exploiting social context for review quality prediction , 2010, WWW '10.

[79]  Qiang Yang,et al.  Cross-domain sentiment classification via spectral feature alignment , 2010, WWW '10.

[80]  David A. Shamma,et al.  Characterizing debate performance via aggregated twitter sentiment , 2010, CHI.

[81]  Songbo Tan,et al.  Adapting information bottleneck method for automatic construction of domain-oriented sentiment lexicon , 2010, WSDM '10.

[82]  Mitsuru Ishizuka,et al.  EmoHeart: Conveying Emotions in Second Life Based on Affect Sensing from Text , 2010, Adv. Hum. Comput. Interact..

[83]  Janyce Wiebe,et al.  Subjectivity Word Sense Disambiguation , 2009, EMNLP.

[84]  Songbo Tan,et al.  Building domain-oriented sentiment lexicon by improved information bottleneck , 2009, CIKM.

[85]  Zhong Su,et al.  Product feature categorization with multilevel latent semantic association , 2009, CIKM.

[86]  Jingbo Zhu,et al.  Multi-aspect opinion polling from textual reviews , 2009, CIKM.

[87]  Yulan He,et al.  Joint sentiment/topic model for sentiment analysis , 2009, CIKM.

[88]  Xuanjing Huang,et al.  A unified relevance model for opinion retrieval , 2009, CIKM.

[89]  Clement T. Yu,et al.  The effect of negation on sentiment analysis and retrieval effectiveness , 2009, CIKM.

[90]  ChengXiang Zhai,et al.  Generating comparative summaries of contradictory opinions in text , 2009, CIKM.

[91]  Barry Smyth,et al.  Learning to recommend helpful hotel reviews , 2009, RecSys '09.

[92]  Gregor Heinrich,et al.  A Generic Approach to Topic Models , 2009, ECML/PKDD.

[93]  Lise Getoor,et al.  Opinion Graphs for Polarity and Discourse Classification , 2009, Graph-based Methods for Natural Language Processing.

[94]  Saif Mohammad,et al.  Generating High-Coverage Semantic Orientation Lexicons From Overtly Marked Words and a Thesaurus , 2009, EMNLP.

[95]  Eric Crestan,et al.  Web-Scale Distributional Similarity and Entity Set Expansion , 2009, EMNLP.

[96]  Alok N. Choudhary,et al.  Sentiment Analysis of Conditional Sentences , 2009, EMNLP.

[97]  Stephanie Seneff,et al.  Review Sentiment Scoring via a Parse-and-Paraphrase Paradigm , 2009, EMNLP.

[98]  Xuanjing Huang,et al.  Phrase Dependency Parsing for Opinion Mining , 2009, EMNLP.

[99]  Claire Cardie,et al.  Adapting a Polarity Lexicon using Integer Linear Programming for Domain-Specific Sentiment Classification , 2009, EMNLP.

[100]  Carolyn Penstein Rosé,et al.  Generalizing Dependency Features for Opinion Mining , 2009, ACL.

[101]  Qiong Wu,et al.  Graph Ranking for Sentiment Transfer , 2009, ACL.

[102]  Tao Li,et al.  A Non-negative Matrix Tri-factorization Approach to Sentiment Classification with Lexical Prior Knowledge , 2009, ACL.

[103]  Swapna Somasundaran,et al.  Recognizing Stances in Online Debates , 2009, ACL.

[104]  Xiaojun Wan,et al.  Co-Training for Cross-Lingual Sentiment Classification , 2009, ACL.

[105]  Vincent Ng,et al.  Mine the Easy, Classify the Hard: A Semi-Supervised Approach to Automatic Sentiment Classification , 2009, ACL.

[106]  Fernando Diaz,et al.  Sources of evidence for vertical selection , 2009, SIGIR.

[107]  Lei Zhang,et al.  Entity discovery and assignment for opinion mining applications , 2009, KDD.

[108]  Xiaojin Zhu,et al.  Incorporating domain knowledge into topic modeling via Dirichlet Forest priors , 2009, ICML '09.

[109]  Thorsten Joachims,et al.  Learning structural SVMs with latent variables , 2009, ICML '09.

[110]  Xiaojin Zhu,et al.  Latent Dirichlet Allocation with Topic-in-Set Knowledge , 2009, HLT-NAACL 2009.

[111]  Gang Wang,et al.  Understanding user's query intent with wikipedia , 2009, WWW '09.

[112]  Yue Lu,et al.  Rated aspect summarization of short comments , 2009, WWW '09.

[113]  Hugo Zaragoza,et al.  The Probabilistic Relevance Framework: BM25 and Beyond , 2009, Found. Trends Inf. Retr..

[114]  Delip Rao,et al.  Semi-Supervised Polarity Lexicon Induction , 2009, EACL.

[115]  Pasi Fränti,et al.  Web Data Mining , 2009, Encyclopedia of Database Systems.

[116]  Nicholas Asher,et al.  Appraisal of Opinion Expressions in Discourse , 2009 .

[117]  Marie-Francine Moens,et al.  A machine learning approach to sentiment analysis in multilingual Web texts , 2009, Information Retrieval.

[118]  Ian H. Witten,et al.  Learning to link with wikipedia , 2008, CIKM '08.

[119]  Wei Zhang,et al.  Improve the effectiveness of the opinion retrieval and opinion polarity classification , 2008, CIKM '08.

[120]  Theresa Wilson,et al.  Multimodal Subjectivity Analysis of Multiparty Conversation , 2008, EMNLP.

[121]  Xiaojun Wan,et al.  Using Bilingual Knowledge and Ensemble Techniques for Unsupervised Chinese Sentiment Analysis , 2008, EMNLP.

[122]  Claire Cardie,et al.  Learning with Compositional Semantics as Structural Inference for Subsentential Sentiment Analysis , 2008, EMNLP.

[123]  Rada Mihalcea,et al.  Multilingual Subjectivity Analysis Using Machine Translation , 2008, EMNLP.

[124]  Lise Getoor,et al.  Collective Classification in Network Data , 2008, AI Mag..

[125]  Claire Cardie,et al.  Topic Identification for Fine-Grained Opinion Analysis , 2008, COLING.

[126]  Bing Liu,et al.  Mining Opinions in Comparative Sentences , 2008, COLING.

[127]  Yuji Matsumoto,et al.  Emotion Classification Using Massive Examples Extracted from the Web , 2008, COLING.

[128]  Lipika Dey,et al.  Opinion mining from noisy text data , 2008, AND '08.

[129]  Xiao Li,et al.  Learning query intent from regularized click graphs , 2008, SIGIR '08.

[130]  Min Zhang,et al.  A generation model to unify topic relevance and lexicon-based sentiment for opinion retrieval , 2008, SIGIR '08.

[131]  Hosam M. Mahmoud,et al.  Polya Urn Models , 2008 .

[132]  Chengqing Zong,et al.  Multi-domain Sentiment Classification , 2008, ACL.

[133]  Hsinchun Chen,et al.  Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums , 2008, TOIS.

[134]  Xinying Xu,et al.  Hidden sentiment association in chinese web opinion mining , 2008, WWW.

[135]  Yue Lu,et al.  Opinion integration through semi-supervised topic modeling , 2008, WWW.

[136]  Carlo Strapparava,et al.  Learning to identify emotions in text , 2008, SAC '08.

[137]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[138]  Bing Liu,et al.  Opinion spam and analysis , 2008, WSDM '08.

[139]  Ivan Titov,et al.  Modeling online reviews with multi-grain topic models , 2008, WWW.

[140]  Yubo Chen,et al.  Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix , 2004, Manag. Sci..

[141]  Jeffrey T. Hancock,et al.  On Lying and Being Lied To: A Linguistic Analysis of Deception in Computer-Mediated Communication , 2007 .

[142]  淳子 井上 Emotion and Reason in Consumer Behavior , 2007 .

[143]  Songbo Tan,et al.  A novel scheme for domain-transfer problem in the context of sentiment analysis , 2007, CIKM '07.

[144]  Graeme Hirst,et al.  Bigrams of Syntactic Labels for Authorship Discrimination of Short Texts , 2007, Lit. Linguistic Comput..

[145]  Mike Y. Chen,et al.  Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web , 2001 .

[146]  Chrysanthos Dellarocas,et al.  Exploring the value of online product reviews in forecasting sales: The case of motion pictures , 2007 .

[147]  Hsin-Hsi Chen,et al.  What emotions do news articles trigger in their readers? , 2007, SIGIR.

[148]  Marcelo Fiszman,et al.  Interpreting comparative constructions in biomedical text , 2007, BioNLP@ACL.

[149]  Hsin-Hsi Chen,et al.  Building Emotion Lexicon from Weblog Corpora , 2007, ACL.

[150]  Bing Liu,et al.  Review spam detection , 2007, WWW '07.

[151]  R. Kreuz,et al.  Lexical Influences on the Perception of Sarcasm , 2007 .

[152]  Karo Moilanen,et al.  Sentiment Composition , 2007 .

[153]  Dipanjan Das Andr,et al.  A Survey on Automatic Text Summarization , 2007 .

[154]  Zhu Zhang,et al.  Utility scoring of product reviews , 2006, CIKM '06.

[155]  Xiaoyan Zhu,et al.  Movie review mining and summarization , 2006, CIKM '06.

[156]  Tie-Yan Liu,et al.  Adapting ranking SVM to document retrieval , 2006, SIGIR.

[157]  Bing Liu,et al.  Identifying comparative sentences in text documents , 2006, SIGIR.

[158]  Qiang Yang,et al.  Building bridges for web query classification , 2006, SIGIR.

[159]  Soo-Min Kim,et al.  Automatically Assessing Review Helpfulness , 2006, EMNLP.

[160]  Claire Cardie,et al.  Partially Supervised Coreference Resolution for Opinion Summarization through Structured Rule Learning , 2006, EMNLP.

[161]  Hiroshi Kanayama,et al.  Fully Automatic Lexicon Expansion for Domain-oriented Sentiment Analysis , 2006, EMNLP.

[162]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[163]  Koji Eguchi,et al.  Sentiment Retrieval using Generative Models , 2006, EMNLP.

[164]  Siddharth Patwardhan,et al.  Feature Subsumption for Opinion Analysis , 2006, EMNLP.

[165]  Eduard Hovy,et al.  Extracting Opinions, Opinion Holders, and Topics Expressed in Online News Media Text , 2006 .

[166]  Claire Cardie,et al.  Joint Extraction of Entities and Relations for Opinion Recognition , 2006, EMNLP.

[167]  Soo-Min Kim,et al.  Automatic Identification of Pro and Con Reasons in Online Reviews , 2006, ACL.

[168]  Rada Mihalcea,et al.  Word Sense and Subjectivity , 2006, ACL.

[169]  Vincent Ng,et al.  Examining the Role of Linguistic Knowledge Sources in the Automatic Identification and Classification of Reviews , 2006, ACL.

[170]  Masaru Kitsuregawa,et al.  Automatic Construction of Polarity-Tagged Corpus from HTML Documents , 2006, ACL.

[171]  Paul A. Pavlou,et al.  Can online reviews reveal a product's true quality?: empirical findings and analytical modeling of Online word-of-mouth communication , 2006, EC '06.

[172]  Xiaojin Zhu,et al.  Seeing stars when there aren’t many stars: Graph-based semi-supervised learning for sentiment categorization , 2006 .

[173]  Soo-Min Kim,et al.  Identifying and Analyzing Judgment Opinions , 2006, NAACL.

[174]  Rayid Ghani,et al.  Text mining for product attribute extraction , 2006, SKDD.

[175]  Ying Li,et al.  Detecting online commercial intention (OCI) , 2006, WWW '06.

[176]  Janyce Wiebe,et al.  RECOGNIZING STRONG AND WEAK OPINION CLAUSES , 2006, Comput. Intell..

[177]  Alistair Kennedy,et al.  SENTIMENT CLASSIFICATION of MOVIE REVIEWS USING CONTEXTUAL VALENCE SHIFTERS , 2006, Comput. Intell..

[178]  Dan I. Moldovan,et al.  Automatic Discovery of Part-Whole Relations , 2006, CL.

[179]  Janyce Wiebe,et al.  Computing Attitude and Affect in Text: Theory and Applications , 2005, The Information Retrieval Series.

[180]  Andrea Esuli,et al.  Determining the semantic orientation of terms through gloss classification , 2005, CIKM '05.

[181]  W. Bruce Croft,et al.  Similarity measures for tracking information flow , 2005, CIKM '05.

[182]  Oren Etzioni,et al.  Extracting Product Features and Opinions from Reviews , 2005, HLT.

[183]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[184]  Claire Cardie,et al.  Identifying Sources of Opinions with Conditional Random Fields and Extraction Patterns , 2005, HLT.

[185]  Dan I. Moldovan,et al.  A Semantic Scattering Model for the Automatic Interpretation of Genitives , 2005, HLT.

[186]  Giuseppe Carenini,et al.  Extracting knowledge from evaluative text , 2005, K-CAP '05.

[187]  Eric K. Ringger,et al.  Pulse: Mining Customer Opinions from Free Text , 2005, IDA.

[188]  Janyce Wiebe,et al.  Annotating Attributions and Private States , 2005, FCA@ACL.

[189]  Takashi Inui,et al.  Extracting Semantic Orientations of Words using Spin Model , 2005, ACL.

[190]  Jürgen Schmidhuber,et al.  Framewise phoneme classification with bidirectional LSTM and other neural network architectures , 2005, Neural Networks.

[191]  Razvan C. Bunescu,et al.  Mining knowledge from text using information extraction , 2005, SKDD.

[192]  Peter Dahlgren The Internet, Public Spheres, and Political Communication: Dispersion and Deliberation , 2005 .

[193]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[194]  Thomas L. Griffiths,et al.  Integrating Topics and Syntax , 2004, NIPS.

[195]  Janyce Wiebe,et al.  Learning Subjective Language , 2004, CL.

[196]  Michael Gamon,et al.  Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis , 2004, COLING.

[197]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[198]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[199]  Julia Hirschberg,et al.  Identifying Agreement and Disagreement in Conversational Speech: Use of Bayesian Networks to Model Pragmatic Dependencies , 2004, ACL.

[200]  John D. Lafferty,et al.  Semi-supervised learning using randomized mincuts , 2004, ICML.

[201]  Bianca Zadrozny,et al.  Learning and evaluating classifiers under sample selection bias , 2004, ICML.

[202]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[203]  Carlo Strapparava,et al.  Developing Affective Lexical Resources , 2004, PsychNology J..

[204]  Ellen Riloff,et al.  Learning Extraction Patterns for Subjective Expressions , 2003, EMNLP.

[205]  Wai Lam,et al.  Evaluation Challenges in Large-Scale Document Summarization , 2003, ACL.

[206]  Ramakrishnan Srikant,et al.  Mining newsgroups using networks arising from social behavior , 2003, WWW '03.

[207]  J. Pennebaker,et al.  Lying Words: Predicting Deception from Linguistic Styles , 2003, Personality & social psychology bulletin.

[208]  Henry Lieberman,et al.  A model of textual affect sensing using real-world knowledge , 2003, IUI '03.

[209]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[210]  Satoshi Morinaga,et al.  Mining product reputations on the Web , 2002, KDD.

[211]  Claire Gardent,et al.  Improving Machine Learning Approaches to Coreference Resolution , 2002, ACL.

[212]  Eduard H. Hovy,et al.  Learning surface text patterns for a Question Answering System , 2002, ACL.

[213]  Peter Dahlgren,et al.  In Search of the Talkative Public: Media, Deliberative Democracy and Civic Culture , 2002 .

[214]  Maria T. Pazienza,et al.  Information Extraction , 2002, Lecture Notes in Computer Science.

[215]  Thomas L. Griffiths,et al.  Prediction and Semantic Association , 2002, NIPS.

[216]  Malik Yousef,et al.  One-Class SVMs for Document Classification , 2002, J. Mach. Learn. Res..

[217]  Josette Chen,et al.  'Which side are you on?' , 2001, Nature.

[218]  Robert Dale,et al.  Handbook of Natural Language Processing , 2001, Computational Linguistics.

[219]  John Jainschigg,et al.  Thumbs up , 2000 .

[220]  Hideki Mima,et al.  Automatic recognition of multi-word terms:. the C-value/NC-value method , 2000, International Journal on Digital Libraries.

[221]  Janyce Wiebe,et al.  Effects of Adjective Orientation and Gradability on Sentence Subjectivity , 2000, COLING.

[222]  M. KleinbergJon Authoritative sources in a hyperlinked environment , 1999 .

[223]  Janyce Wiebe,et al.  Development and Use of a Gold-Standard Data Set for Subjectivity Classifications , 1999, ACL.

[224]  Lillian Lee,et al.  Measures of Distributional Similarity , 1999, ACL.

[225]  J. Russell,et al.  Science Current Directions in Psychological the Structure of Current Affect : Controversies and Emerging Consensus on Behalf Of: Association for Psychological Science , 2022 .

[226]  Dekang Lin,et al.  Automatic Retrieval and Clustering of Similar Words , 1998, ACL.

[227]  A. Edlin,et al.  Show Me The Money , 1998, Chemistry & biology.

[228]  Vasileios Hatzivassiloglou,et al.  Predicting the Semantic Orientation of Adjectives , 1997, ACL.

[229]  H. van Halteren,et al.  Outside the cave of shadows: using syntactic annotation to enhance authorship attribution , 1996 .

[230]  Janyce Wiebe,et al.  Tracking Point of View in Narrative , 1994, Comput. Linguistics.

[231]  L. L. Shaw,et al.  Differentiating affect, mood, and emotion: Toward functionally based conceptual distinctions. , 1992 .

[232]  J. F. Burrows,et al.  Not Unles You Ask Nicely: The Interpretative Nexus Between Analysis and Information , 1992 .

[233]  Janyce Wiebe Identifying Subjective Characters in Narrative , 1990, COLING.

[234]  R. Kreuz,et al.  How to be sarcastic: The echoic reminder theory of verbal irony. , 1989 .

[235]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[236]  D. Watson,et al.  The vicissitudes of mood measurement: effects of varying descriptors, time frames, and response formats on measures of positive and negative affect. , 1988, Journal of personality and social psychology.

[237]  D. Watson,et al.  Development and validation of brief measures of positive and negative affect: the PANAS scales. , 1988, Journal of personality and social psychology.

[238]  M. Edmunds Seeing stars , 1988, Nature.

[239]  P. Johnson-Laird,et al.  Towards a Cognitive Theory of Emotions , 1987 .

[240]  R. Gibbs On the psycholinguistics of sarcasm. , 1986 .

[241]  D. Watson,et al.  Toward a consensual structure of mood. , 1985, Psychological bulletin.

[242]  J. Russell A circumplex model of affect. , 1980 .

[243]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[244]  M. Knapp,et al.  Telling It Like It Isn't: A Review of Theory and Research on Deceptive Communications. , 1979 .

[245]  J. Heckman Sample selection bias as a specification error , 1979 .

[246]  M. Knapp,et al.  An Exploration of Deception as a Communication Construct , 1974 .

[247]  Marshall S. Smith,et al.  The general inquirer: A computer approach to content analysis. , 1967 .

[248]  J. H. Curtis,et al.  Learning Theory and Behavior , 1960 .

[249]  F E INBAU The lie-detector. , 1946, Journal of clinical and experimental psychopathology.