On the geometrical properties of the coherent matching distance in 2D persistent homology

In this paper we study a new metric for comparing Betti numbers functions in bidimensional persistent homology, based on coherent matchings, i.e. families of matchings that vary in a continuous way. We prove some new results about this metric, including its stability. In particular, we show that the computation of this distance is strongly related to suitable filtering functions associated with lines of slope 1, so underlining the key role of these lines in the study of bidimensional persistence. In order to prove these results, we introduce and study the concepts of extended Pareto grid for a normal filtering function as well as of transport of a matching. As a by-product, we obtain a theoretical framework for managing the phenomenon of monodromy in 2D persistent homology.

[1]  Herbert Edelsbrunner,et al.  Persistent Homology: Theory and Practice , 2013 .

[2]  Andrea Cerri,et al.  A Study of Monodromy in the Computation of Multidimensional Persistence , 2013, DGCI.

[3]  M. Ferri,et al.  Betti numbers in multidimensional persistent homology are stable functions , 2013 .

[4]  H. Edelsbrunner,et al.  Foundations of Computational Mathematics: Minneapolis, 2002: Jacobi Sets , 2004 .

[5]  Daniela Giorgi,et al.  Multidimensional Size Functions for Shape Comparison , 2008, Journal of Mathematical Imaging and Vision.

[6]  M. Ferri,et al.  One-dimensional reduction of multidimensional persistent homology , 2007, math/0702713.

[7]  Andrea Cerri,et al.  Hausdorff Stability of Persistence Spaces , 2016, Found. Comput. Math..

[8]  Michael Lesnick,et al.  Interactive Visualization of 2-D Persistence Modules , 2015, ArXiv.

[9]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[10]  P. Frosini,et al.  Size homotopy groups for computation of natural size distances , 1999 .

[11]  Afra Zomorodian,et al.  Computing Multidimensional Persistence , 2009, J. Comput. Geom..

[12]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..

[13]  Håvard Bakke Bjerkevik Stability of higher-dimensional interval decomposable persistence modules , 2016, ArXiv.

[14]  Michael Lesnick,et al.  Algebraic Stability of Zigzag Persistence Modules , 2016, Algebraic & Geometric Topology.

[15]  Andrea Cerri,et al.  The Coherent Matching Distance in 2D Persistent Homology , 2016, CTIC.

[16]  Michael Kerber,et al.  Computing the Interleaving Distance is NP-Hard , 2018, Foundations of Computational Mathematics.

[17]  Steve Oudot,et al.  Exact computation of the matching distance on 2-parameter persistence modules , 2018, SoCG.

[18]  Magnus Bakke Botnan,et al.  Computational Complexity of the Interleaving Distance , 2017, SoCG.

[19]  Patrizio Frosini,et al.  Size Functions and Formal Series , 2001, Applicable Algebra in Engineering, Communication and Computing.

[20]  Andrea Cerri,et al.  Necessary conditions for discontinuities of multidimensional persistent Betti numbers , 2015 .

[21]  Y. Wan,et al.  Morse theory for two functions , 1975 .

[22]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[23]  Andrea Cerri,et al.  A new approximation Algorithm for the Matching Distance in Multidimensional Persistence , 2011 .

[24]  Tamal K. Dey,et al.  Computing Bottleneck Distance for 2-D Interval Decomposable Modules , 2018, SoCG.

[25]  Patrizio Frosini,et al.  Natural Pseudo-Distance and Optimal Matching between Reduced Size Functions , 2008, ArXiv.

[26]  Michael Lesnick,et al.  The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..

[27]  Daniela Giorgi,et al.  A new algorithm for computing the 2-dimensional matching distance between size functions , 2011, Pattern Recognit. Lett..