Efeito das condições operacionais e estudo cinético na degradação eletroquímica do corante azul de metileno sobre anodo de Ti/Ru0.3Ti0.7O2

Efluentes texteis e alimenticios apresentam comumente em sua composicao compostos corantes danosos a saude humana e ao meio ambiente e neste contexto tecnologias de oxidacao avancada como os processos eletroquimicos tem despontado como alternativa de tratamento de compostos refratarios presentes nestas aguas residuarias. Assim, este trabalho investigou a degradacao do corante basico azul de metileno a temperatura ambiente (25oC) via tratamento eletrocatalitico com anodo comercial de Ti/Ru0.3Ti0.7O2 (30% de RuO2 e 70% de TiO2). Os estudos experimentais a pH = 6,8 foram executados para a avaliacao do efeito do potencial de eletrolise, natureza e concentracao do suporte eletrolitico e concentracao inicial de corante sobre a eficiencia e cinetica de degradacao do corante. Os resultados mostraram degradacoes superiores a 90% em 60 min de tratamento por eletrolise indireta usando 0,01 mol L-1 NaCl e 0,01 mol L-1 Na2SO4 como suporte eletrolitico sob potencial de 5,0 V para concentracoes entre 5 mg L-1 e 25 mg L-1. A cinetica de eletrodegradacao foi tipicamente de primeira ordem. Em geral, os valores de eficiencia de degradacao encontrados ratificaram o carater promissor da aplicacao de anodos dimensionalmente estaveis na despoluicao de aguas residuarias coloridas.

[1]  A. Dargahi,et al.  Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: Optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater , 2020, Arabian Journal of Chemistry.

[2]  L. Meili,et al.  Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes , 2020 .

[3]  W. Qu,et al.  Electrochemical oxidative degradation of X-6G dye by boron-doped diamond anodes: Effect of operating parameters. , 2020, Chemosphere.

[4]  M. Fayazi,et al.  Electrochemical mineralization of methylene blue dye using electro-Fenton oxidation catalyzed by a novel sepiolite/pyrite nanocomposite , 2020, International Journal of Environmental Science and Technology.

[5]  M. Suresh Kumar,et al.  Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation. , 2020, Chemosphere.

[6]  T. Saleh,et al.  Electrochemical removal of methylene blue using alginate-modified graphene adsorbents , 2019 .

[7]  F. Cases,et al.  Effect of chloride on the one step electrochemical treatment of an industrial textile wastewater with tin dioxide anodes. The case of trichromy procion HEXL. , 2019, Chemosphere.

[8]  A. G. Magdalena,et al.  Electrochemically-driven mineralization of Reactive Blue 4 cotton dye: On the role of in situ generated oxidants , 2019, Journal of Electroanalytical Chemistry.

[9]  V. Krstić,et al.  Reviews the research on some dimensionally stable anodes (DSA) based on titanium , 2019, Hydrometallurgy.

[10]  Alessandro Abbà,et al.  Treatments for color removal from wastewater: State of the art. , 2019, Journal of environmental management.

[11]  N. H. Jawad,et al.  Removal of Methylene Blue by Direct Electrochemical Oxidation Method Using a Graphite Anode , 2018, IOP Conference Series: Materials Science and Engineering.

[12]  D. Yaseen,et al.  Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review , 2018, International Journal of Environmental Science and Technology.

[13]  Ping Li,et al.  Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites , 2018, Materials Science in Semiconductor Processing.

[14]  Marco Panizza,et al.  Electrochemical oxidation of organic pollutants for wastewater treatment , 2018, Current Opinion in Electrochemistry.

[15]  V. Sangal,et al.  Parametric study of electro-Fenton treatment for real textile wastewater, disposal study and its cost analysis , 2018, International Journal of Environmental Science and Technology.

[16]  L. Bazzi,et al.  Electrochemical decolorization of Rhodamine B dye: Influence of anode material, chloride concentration and current density , 2018 .

[17]  E. Rivero,et al.  Experimental study and mathematical modeling of the electrochemical degradation of dyeing wastewaters in presence of chloride ion with dimensional stable anodes (DSA) of expanded meshes in a FM01-LC reactor , 2018 .

[18]  Seema Singh,et al.  Comparative study of electrochemical oxidation for dye degradation: Parametric optimization and mechanism identification , 2016 .

[19]  S. Kitane,et al.  Activity of Pt/MnO2 electrode in the electrochemical degradation of methylene blue in aqueous solution , 2015 .

[20]  Qiuju Du,et al.  Methylene blue adsorption on graphene oxide/calcium alginate composites. , 2013, Carbohydrate polymers.

[21]  Guohua Chen,et al.  Electrochemistry for the Environment , 2010 .

[22]  E. Foresti,et al.  Sulfide toxicity kinetics of a uasb reactor , 2009 .

[23]  G. R. P. Malpass,et al.  Avaliação dos tratamentos eletroquímico e fotoeletroquímico na degradação de corantes têxteis , 2006 .

[24]  R. Bertazzoli,et al.  Selection of a Commercial Anode Oxide Coating for Electro-oxidation of Cyanide , 2002 .

[25]  Meng Nan Chong,et al.  Electrochemical oxidation remediation of real wastewater effluents — A review , 2018 .

[26]  M. Indu,et al.  Electrochemical Oxidation of Methylene Blue Using Lead Acid Battery Anode , 2014 .

[27]  A. Gupta,et al.  Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2 , 2006 .