Causal Inference on Discrete Data via Estimating Distance Correlations
暂无分享,去创建一个
[1] Aapo Hyvärinen,et al. Causality Discovery with Additive Disturbances: An Information-Theoretical Perspective , 2009, ECML/PKDD.
[2] Aapo Hyvärinen,et al. Pairwise likelihood ratios for estimation of non-Gaussian structural equation models , 2013, J. Mach. Learn. Res..
[3] Bernhard Schölkopf,et al. On Causal Discovery with Cyclic Additive Noise Models , 2011, NIPS.
[4] Bernhard Schölkopf,et al. Causal Discovery via Reproducing Kernel Hilbert Space Embeddings , 2014, Neural Computation.
[5] Bernhard Schölkopf,et al. Inference of Cause and Effect with Unsupervised Inverse Regression , 2015, AISTATS.
[6] J. Pearl. Causality: Models, Reasoning and Inference , 2000 .
[7] Bernhard Schölkopf,et al. Telling cause from effect based on high-dimensional observations , 2009, ICML.
[8] Zhitang Chen,et al. Nonlinear Causal Discovery for High Dimensional Data: A Kernelized Trace Method , 2013, 2013 IEEE 13th International Conference on Data Mining.
[9] Bernhard Schölkopf,et al. Nonlinear causal discovery with additive noise models , 2008, NIPS.
[10] Bernhard Schölkopf,et al. Identifying Cause and Effect on Discrete Data using Additive Noise Models , 2010, AISTATS.
[11] Bernhard Schölkopf,et al. Causal Inference Using the Algorithmic Markov Condition , 2008, IEEE Transactions on Information Theory.
[12] Aapo Hyvärinen,et al. On the Identifiability of the Post-Nonlinear Causal Model , 2009, UAI.
[13] Bernhard Schölkopf,et al. Kernel Methods for Measuring Independence , 2005, J. Mach. Learn. Res..
[14] Tom Burr,et al. Causation, Prediction, and Search , 2003, Technometrics.
[15] Patrik O. Hoyer,et al. Bayesian Discovery of Linear Acyclic Causal Models , 2009, UAI.
[16] Bernhard Schölkopf,et al. On causal and anticausal learning , 2012, ICML.
[17] Frederick Eberhardt,et al. Learning linear cyclic causal models with latent variables , 2012, J. Mach. Learn. Res..
[18] Aapo Hyvärinen,et al. DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model , 2011, J. Mach. Learn. Res..
[19] Jan Lemeire,et al. Replacing Causal Faithfulness with Algorithmic Independence of Conditionals , 2013, Minds and Machines.
[20] Aapo Hyvärinen,et al. A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..
[21] Bernhard Schölkopf,et al. Information-geometric approach to inferring causal directions , 2012, Artif. Intell..
[22] Dominik Janzing,et al. Testing whether linear equations are causal: A free probability theory approach , 2011, UAI.
[23] Bernhard Schölkopf,et al. Causal Inference on Discrete Data Using Additive Noise Models , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[24] Maria L. Rizzo,et al. Measuring and testing dependence by correlation of distances , 2007, 0803.4101.
[25] Aapo Hyvärinen,et al. Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity , 2010, J. Mach. Learn. Res..