A class of high-order Runge-Kutta-Chebyshev stability polynomials
暂无分享,去创建一个
[1] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[2] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[3] J. Martín-Vaquero,et al. Second-order stabilized explicit Runge-Kutta methods for stiff problems , 2009, Comput. Phys. Commun..
[4] Stéphane Descombes,et al. Splitting methods with complex times for parabolic equations , 2009 .
[5] H. Lomax. On the construction of highly stable, explicit, numerical methods for integrating coupled ordinary differential equations with parasitic eigenvalues , 1968 .
[6] L. Shampine,et al. RKC: an explicit solver for parabolic PDEs , 1998 .
[7] A. Medovikov. High order explicit methods for parabolic equations , 1998 .
[8] P. Gremaud,et al. Super-time-stepping acceleration of explicit schemes for parabolic problems , 1996 .
[9] Assyr Abdulle,et al. PIROCK: A swiss-knife partitioned implicit-explicit orthogonal Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction problems with or without noise , 2013, J. Comput. Phys..
[10] Assyr Abdulle,et al. Second order Chebyshev methods based on orthogonal polynomials , 2001, Numerische Mathematik.
[11] J. Verwer. Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .
[12] Juan C. Jiménez,et al. Local Linearization - Runge-Kutta methods: A class of A-stable explicit integrators for dynamical systems , 2012, Math. Comput. Model..
[13] Willem Hundsdorfer,et al. Convergence properties of the Runge-Kutta-Chebyshev method , 1990 .
[14] P. J. van deHouwen,et al. The development of Runge-Kutta methods for partial differential equations , 1994 .
[15] Abdul-Qayyum M. Khaliq,et al. Stabilized explicit Runge-Kutta methods for multi-asset American options , 2014, Comput. Math. Appl..
[16] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[17] Juan C. Jiménez,et al. Local Linearization-Runge Kutta (LLRK) Methods for Solving Ordinary Differential Equations , 2006, International Conference on Computational Science.
[18] V. I. Lebedev,et al. Explicit difference schemes for solving stiff problems with a complex or separable spectrum , 2000 .
[19] W. Riha,et al. Optimal stability polynomials , 1972, Computing.
[20] Philipp Dörsek,et al. High order splitting schemes with complex timesteps and their application in mathematical finance , 2012, J. Comput. Appl. Math..
[21] M. Warnez,et al. Reduced temporal convergence rates in high-order splitting schemes , 2013, 1310.3901.
[22] T. Downes,et al. A three-dimensional numerical method for modelling weakly ionized plasmas , 2006, astro-ph/0612580.
[23] Conall O'Sullivan,et al. On the acceleration of explicit finite difference methods for option pricing , 2011 .
[24] K. C. Park,et al. Construction of Integration Formulas For Initial Value Problems , 2012 .
[25] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[26] A. Ostermann,et al. High order splitting methods for analytic semigroups exist , 2009 .
[27] Alexander Ostermann,et al. Dimension splitting for quasilinear parabolic equations , 2010 .
[28] Fernando Casas,et al. Optimized high-order splitting methods for some classes of parabolic equations , 2011, Math. Comput..
[29] Charalambos Makridakis,et al. Interior a posteriori error estimates for time discrete approximations of parabolic problems , 2013, Numerische Mathematik.
[30] M. Parsani,et al. Propagation of internal errors in explicit Runge--Kutta methods and internal stability of SSP and ex , 2013, 1309.1317.
[31] Willem Hundsdorfer,et al. A note on splitting errors for advection-reaction equations , 1995 .
[32] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[33] A. Hindmarsh,et al. CVODE, a stiff/nonstiff ODE solver in C , 1996 .
[34] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[35] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[36] Guriĭ Ivanovich Marchuk,et al. Numerical Methods in the Theory of Neutron Transport , 1986 .
[37] P. Houwen,et al. On the Internal Stability of Explicit, m‐Stage Runge‐Kutta Methods for Large m‐Values , 1979 .
[38] T. Aslam,et al. A second-order accurate Super TimeStepping formulation for anisotropic thermal conduction , 2012 .
[39] Alexander Ostermann,et al. Interior estimates for time discretizations of parabolic equations , 1995 .
[40] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[41] S. SIAMJ.,et al. FOURTH ORDER CHEBYSHEV METHODS WITH RECURRENCE RELATION∗ , 2002 .
[42] V. Lebedev,et al. Utilization of ordered chebyshev parameters in iterative methods , 1976 .
[43] G. Nicolis,et al. Chemical instabilities and sustained oscillations. , 1971, Journal of theoretical biology.
[44] Lawrence F. Shampine,et al. IRKC: an IMEX solver for stiff diffusion-reaction PDEs , 2005 .
[45] T. Downes,et al. An explicit scheme for multifluid magnetohydrodynamics , 2005, astro-ph/0511478.
[46] J. Brandts. [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .
[47] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .
[48] Dinshaw S. Balsara,et al. A stabilized Runge-Kutta-Legendre method for explicit super-time-stepping of parabolic and mixed equations , 2014, J. Comput. Phys..
[49] P. Houwen,et al. Parallel iteration of high-order Runge-Kutta methods with stepsize control , 1990 .