A class of high-order Runge-Kutta-Chebyshev stability polynomials

The analytic form of a new class of factorized Runge-Kutta-Chebyshev (FRKC) stability polynomials of arbitrary order N is presented. Roots of FRKC stability polynomials of degree L = M N are used to construct explicit schemes comprising L forward Euler stages with internal stability ensured through a sequencing algorithm which limits the internal amplification factors to ~ L 2 . The associated stability domain scales as M 2 along the real axis. Marginally stable real-valued points on the interior of the stability domain are removed via a prescribed damping procedure.By construction, FRKC schemes meet all linear order conditions; for nonlinear problems at orders above 2, complex splitting or Butcher series composition methods are required. Linear order conditions of the FRKC stability polynomials are verified at orders 2, 4, and 6 in numerical experiments. Comparative studies with existing methods show the second-order unsplit FRKC2 scheme and higher order (4 and 6) split FRKCs schemes are efficient for large moderately stiff problems.

[1]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[2]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[3]  J. Martín-Vaquero,et al.  Second-order stabilized explicit Runge-Kutta methods for stiff problems , 2009, Comput. Phys. Commun..

[4]  Stéphane Descombes,et al.  Splitting methods with complex times for parabolic equations , 2009 .

[5]  H. Lomax On the construction of highly stable, explicit, numerical methods for integrating coupled ordinary differential equations with parasitic eigenvalues , 1968 .

[6]  L. Shampine,et al.  RKC: an explicit solver for parabolic PDEs , 1998 .

[7]  A. Medovikov High order explicit methods for parabolic equations , 1998 .

[8]  P. Gremaud,et al.  Super-time-stepping acceleration of explicit schemes for parabolic problems , 1996 .

[9]  Assyr Abdulle,et al.  PIROCK: A swiss-knife partitioned implicit-explicit orthogonal Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction problems with or without noise , 2013, J. Comput. Phys..

[10]  Assyr Abdulle,et al.  Second order Chebyshev methods based on orthogonal polynomials , 2001, Numerische Mathematik.

[11]  J. Verwer Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .

[12]  Juan C. Jiménez,et al.  Local Linearization - Runge-Kutta methods: A class of A-stable explicit integrators for dynamical systems , 2012, Math. Comput. Model..

[13]  Willem Hundsdorfer,et al.  Convergence properties of the Runge-Kutta-Chebyshev method , 1990 .

[14]  P. J. van deHouwen,et al.  The development of Runge-Kutta methods for partial differential equations , 1994 .

[15]  Abdul-Qayyum M. Khaliq,et al.  Stabilized explicit Runge-Kutta methods for multi-asset American options , 2014, Comput. Math. Appl..

[16]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[17]  Juan C. Jiménez,et al.  Local Linearization-Runge Kutta (LLRK) Methods for Solving Ordinary Differential Equations , 2006, International Conference on Computational Science.

[18]  V. I. Lebedev,et al.  Explicit difference schemes for solving stiff problems with a complex or separable spectrum , 2000 .

[19]  W. Riha,et al.  Optimal stability polynomials , 1972, Computing.

[20]  Philipp Dörsek,et al.  High order splitting schemes with complex timesteps and their application in mathematical finance , 2012, J. Comput. Appl. Math..

[21]  M. Warnez,et al.  Reduced temporal convergence rates in high-order splitting schemes , 2013, 1310.3901.

[22]  T. Downes,et al.  A three-dimensional numerical method for modelling weakly ionized plasmas , 2006, astro-ph/0612580.

[23]  Conall O'Sullivan,et al.  On the acceleration of explicit finite difference methods for option pricing , 2011 .

[24]  K. C. Park,et al.  Construction of Integration Formulas For Initial Value Problems , 2012 .

[25]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[26]  A. Ostermann,et al.  High order splitting methods for analytic semigroups exist , 2009 .

[27]  Alexander Ostermann,et al.  Dimension splitting for quasilinear parabolic equations , 2010 .

[28]  Fernando Casas,et al.  Optimized high-order splitting methods for some classes of parabolic equations , 2011, Math. Comput..

[29]  Charalambos Makridakis,et al.  Interior a posteriori error estimates for time discrete approximations of parabolic problems , 2013, Numerische Mathematik.

[30]  M. Parsani,et al.  Propagation of internal errors in explicit Runge--Kutta methods and internal stability of SSP and ex , 2013, 1309.1317.

[31]  Willem Hundsdorfer,et al.  A note on splitting errors for advection-reaction equations , 1995 .

[32]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[33]  A. Hindmarsh,et al.  CVODE, a stiff/nonstiff ODE solver in C , 1996 .

[34]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[35]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[36]  Guriĭ Ivanovich Marchuk,et al.  Numerical Methods in the Theory of Neutron Transport , 1986 .

[37]  P. Houwen,et al.  On the Internal Stability of Explicit, m‐Stage Runge‐Kutta Methods for Large m‐Values , 1979 .

[38]  T. Aslam,et al.  A second-order accurate Super TimeStepping formulation for anisotropic thermal conduction , 2012 .

[39]  Alexander Ostermann,et al.  Interior estimates for time discretizations of parabolic equations , 1995 .

[40]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[41]  S. SIAMJ.,et al.  FOURTH ORDER CHEBYSHEV METHODS WITH RECURRENCE RELATION∗ , 2002 .

[42]  V. Lebedev,et al.  Utilization of ordered chebyshev parameters in iterative methods , 1976 .

[43]  G. Nicolis,et al.  Chemical instabilities and sustained oscillations. , 1971, Journal of theoretical biology.

[44]  Lawrence F. Shampine,et al.  IRKC: an IMEX solver for stiff diffusion-reaction PDEs , 2005 .

[45]  T. Downes,et al.  An explicit scheme for multifluid magnetohydrodynamics , 2005, astro-ph/0511478.

[46]  J. Brandts [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .

[47]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[48]  Dinshaw S. Balsara,et al.  A stabilized Runge-Kutta-Legendre method for explicit super-time-stepping of parabolic and mixed equations , 2014, J. Comput. Phys..

[49]  P. Houwen,et al.  Parallel iteration of high-order Runge-Kutta methods with stepsize control , 1990 .