Advanced nanocrystalline ZrO2 for optical oxygen sensors

It was shown that ZrO2 nanopowders and nanoceramics can be used as an optical oxygen sensor, where the luminescence signal is proportional to the partial oxygen pressure in gases. The nanopowders were obtained in a hydrothermal microwave driven process followed by annealing at 750°C. Nanoceramics were obtained by sintering at pressures up to 6 GPa and at 250°C so that grain growth did not occur. Luminescence of both materials depends linearly on the oxygen content in nitrogen-oxygen mixtures for 2.1% - 25 vol% oxygen content. For luminescence excitation using an electron beam, the luminescence intensity decreases as oxygen pressure increases. For excitation with a laser beam, the opposite effect is observed - the lower the oxygen pressure, the lower the luminescence signal. The experimental results are explained in terms of luminescence centers being distorted lattice sites close to vacancies.

[1]  A. Emeline,et al.  Photoactivity and photoselectivity of a dielectric metal-oxide photocatalyst (ZrO2) probed by the photoinduced reduction of oxygen and oxidation of hydrogen , 2005 .

[2]  S. Paje,et al.  Disorder effects on the luminescence decay in yttria-stabilized zirconia polycrystals , 1996 .

[3]  Witold Łojkowski,et al.  Relation between structural properties of Pr3+-doped yttria-stabilized zirconia nanopowders and their luminescence efficiency , 2009 .

[4]  Yadong Li,et al.  Characterization and synthesis of pure ZrO2 nanopowders via sonochemical method , 2003 .

[5]  N. Minh Ceramic Fuel Cells , 1993 .

[6]  K. Smits,et al.  Radiative Decay of Electronic Excitations in ZrO$_{2}$ Nanocrystals and Macroscopic Single Crystals , 2008, IEEE Transactions on Nuclear Science.

[7]  K. Smits,et al.  Luminescence of oxygen related defects in zirconia nanocrystals , 2007 .

[8]  K. Domen,et al.  Photoluminescence and FT-IR studies of the dissociative adsorption of H2 on the active ZrO2 catalyst and its role in the hydrogenation of CO , 1990 .

[9]  L. Díaz-Torres,et al.  Concentration enhanced red upconversion in nanocrystalline ZrO2 : Er under IR excitation , 2004 .

[10]  P. Prasad,et al.  Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals , 2003 .

[11]  Xinping Wang,et al.  The study of surface properties of ZrO2 , 2004 .

[12]  K. Smits,et al.  Comparison of ZrO2:Y nanocrystals and macroscopic single crystal luminescence , 2007 .

[13]  T. Orlando,et al.  Laser-stimulated luminescence of yttria-stabilized cubic zirconia crystals , 1999 .

[14]  Grzegorz P. Karwasz,et al.  Positron-annihilation and photoluminescence studies of nanostructured ZrO2 , 2010 .

[15]  R. T. Pascoe,et al.  Ceramic steel? , 1975, Nature.

[16]  Baode Sun,et al.  Air plasma sprayed thermal barrier coatings on titanium alloy substrates , 2007 .

[17]  J. Aarik,et al.  Thin films of HfO2 and ZrO2 as potential scintillators , 2005 .

[18]  K. Kurzydłowski,et al.  Effect of pressure on synthesis of Pr-doped zirconia powders produced by microwave-driven hydrothermal reaction , 2006 .

[19]  H. Eilers,et al.  Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3 , 1996 .

[20]  Larisa Grigorjeva,et al.  Zirconia Based Nanomaterials for Oxygen Sensors – Generation, Characterisation and Optical Properties , 2007 .

[21]  Ellen Ivers-Tiffée,et al.  Principles of solid state oxygen sensors for lean combustion gas control , 2001 .