Electron correlation and many‐body effects at interfaces on semiconducting substrates

Low dimensional systems are characterized by at least one spatial dimension of only some atoms. Such size reduction has often important consequences for physical properties. Electronic correlation and electron–phonon coupling can originate Mott insulators or charge density waves (CDWs), both phenomena enhanced by dimensionality reduction. Interfaces offer a natural way of reducing the dimensionality. Among all the surfaces, semiconducting surfaces are particularly well adapted for electronic correlation studies. In them, correlation is enhanced because of the low dimension, the electronic localization in dangling bonds and the large inter‐orbital distances in reconstructions. Despite these factors favoring correlation, eventually stronger than in bulk systems, the field is by far much less developed. We review here the discovery of correlated surfaces, while studying the Schottky barrier of alkalis on Si or GaAs, and coetaneous studies on SiC. We summarize then the studies on K/Si(111):B, whose ${\left( {\sqrt {3} \times \sqrt {3} } \right)}R30^\circ $ was considered a surface Mott insulator with an important electron‐phonon coupling. The recent discovery of a ${\left( {2\sqrt {3} \times 2\sqrt {3} } \right)}R30^\circ $ symmetry has been first interpreted as evidence of a bipolaronic insulator, but new findings have finally proven it to be a band insulator. We will then focus on the model system Sn/Ge(111). The last unclear issue about the (3 × 3) reconstruction at 150 K was related to the Sn 4d core level. High‐resolution photoemission has clarified the core level deconvolution while refining the structural model. This metallic reconstruction is sensitive to electronic correlations which trigger a phase transition to a Mott phase below 30 K.

[1]  E. Michel,et al.  Back Cover: Electron correlation and many-body effects at interfaces on semiconducting substrates (Phys. Status Solidi A 4/2012) , 2012 .

[2]  W. Marsden I and J , 2012 .

[3]  L. Chaput,et al.  Giant alkali-metal-induced lattice relaxation as the driving force of the insulating phase of alkali-metal/Si(111):B. , 2011, Physical review letters.

[4]  A. Taleb-Ibrahimi,et al.  Bipolaronic insulator on alkali/Si(111):B-2√3×2√3R30° interfaces , 2010 .

[5]  T. Shirasawa,et al.  Ground state of the Sn/Ge(111)-3×3 surface and its electron-beam-induced disordering , 2010 .

[6]  S. Hasegawa,et al.  Insulating conduction in Sn/Si(111): Possibility of a Mott insulating ground state and metallization/localization induced by carrier doping , 2009 .

[7]  R. Wiesendanger,et al.  Correction of systematic errors in scanning tunneling spectra on semiconductor surfaces: The energy gap of Si(111)- 7×7 at 0.3 K , 2009, 0908.2748.

[8]  D. Malterre,et al.  Surface-state bipolaron formation on a triangular lattice in the sp-type alkali-metal/Si(111) Mott insulator. , 2009, Physical review letters.

[9]  H. Yeom,et al.  Comment on "Metallic nature of the alpha-Sn/Ge(111) surface down to 2.5 K". , 2009, Physical review letters.

[10]  H. Yeom,et al.  Observation of a metallic ground state of Sn/Ge(111)-3×3 at 4 K , 2008 .

[11]  S. Colonna,et al.  Metallic nature of the alpha-Sn/Ge(111) surface down to 2.5 K. , 2008, Physical review letters.

[12]  E. Michel,et al.  Structural origin of the Sn 4d core level line shape in Sn/Ge(111)-(3x3). , 2008, Physical review letters.

[13]  D. Mandrus,et al.  A Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition , 2007, Science.

[14]  E. Michel,et al.  The Fermi surface of Sn/Ge(111) and Pb/Ge(111) , 2007 .

[15]  A. Goldoni,et al.  Insulating Ground State of Sn/Si(111)-(√3 × √3)R30° , 2007 .

[16]  G. Profeta,et al.  Triangular Mott-Hubbard insulator phases of Sn/Si(111) and Sn/Ge(111) surfaces. , 2007, Physical review letters.

[17]  P. Hofmann,et al.  Disentangling surface, bulk, and space-charge-layer conductivity in Si(111)-(7 x 7). , 2006, Physical review letters.

[18]  P. Ordejón,et al.  Electron transport via local polarons at interface atoms. , 2006, Physical review letters.

[19]  F. Bechstedt,et al.  Geometry and electronic band structure of surfaces: the case of Ge(111):Sn and C(111) , 2006 .

[20]  S. Erwin Solid-state physics: When is a metal not a metal? , 2006, Nature.

[21]  O. Pulci,et al.  Surface Structure and Energy Bands of 1/3 ML Sn/Ge(111) , 2006 .

[22]  J. Zegenhagen,et al.  Chemically Resolved Structure of the Sn/Ge(111) Surface , 2006 .

[23]  E. Michel,et al.  Observation of a Mott insulating ground state for Sn/Ge(111) at low temperature. , 2006, Physical review letters.

[24]  O. Custance,et al.  Direct observation of a (3 x 3) phase in alpha-Pb/Ge(111) at 10 K. , 2005, Physical review letters.

[25]  S. Colonna,et al.  Direct observation of sn adatoms dynamical fluctuations at the Sn/Ge(111) surface. , 2005, Physical review letters.

[26]  Kehui Wu Unusual diffusivity and clustering of alkali metals on the Si(111)-7x7 surface , 2005 .

[27]  Junren Shi,et al.  Low temperature disordered phase of alpha-Pb/Ge(111). , 2004, Physical review letters.

[28]  E. Michel,et al.  Structural phase transitions in two-dimensional systems: Pb/Ge(111) and Sn/Ge(111) , 2005 .

[29]  M. E. Dávila,et al.  Giant effect of electron and hole donation onSn∕Ge(111)andSn∕Si(111)surfaces , 2004 .

[30]  P. Smith,et al.  Atomic and electronic structure of theK∕Si(111)3×3R30°−Bchemisorption system , 2004 .

[31]  H. Zacharias,et al.  Unoccupied Mott-Hubbard state on the (√(3)×√(3)) R30° reconstructed 4H-SiC (0001) surface , 2004 .

[32]  T. Nagao,et al.  Na adsorption on the Si111-(7 x 7) surface: from two-dimensional gas to nanocluster array. , 2003, Physical review letters.

[33]  E. Michel,et al.  Phonon softening, chaotic motion, and order-disorder transition in Sn/Ge(111). , 2003, Physical review letters.

[34]  Stefano de Gironcoli,et al.  Disproportionation phenomena on free and strained Sn/Ge(111) and Sn/Si(111) surfaces. , 2002, Physical review letters.

[35]  P. Smith,et al.  Electronic structure of theSi(111)3×3R30°−Bsurface , 2002 .

[36]  F. Flores,et al.  Dynamical fluctuations and the v3 v3 ? 3 3 transition in a-Sn/Ge(111) and Sn/Si(111) , 2002 .

[37]  S. Hasegawa,et al.  STM observation of Si(111)-α-√3×√3-Sn at low temperature , 2002 .

[38]  T. Miller,et al.  TOPICAL REVIEW: Fermi surfaces and energy gaps in Sn/Ge(111) , 2002 .

[39]  R. Uhrberg High-resolution core-level spectroscopy of Si(100)c(4 × 2) and some metal-induced Si(111)√3 × √3 surfaces , 2001 .

[40]  F. Flores,et al.  Contrasted electronic properties of Sn-adatom-based ( 3 × 3 ) R 30 ° reconstructions on Si(111) , 2001 .

[41]  F. Flores,et al.  Surface Soft Phonon and the × 3×3 Phase Transition in Sn/Ge(111) and Sn/Si(111) , 2001 .

[42]  J. Ortega,et al.  Electron correlation effects at Sn/Si(1 1 1)–3×3,3×3 and Sn/Ge(1 1 1)–3×3,3×3 reconstructions , 2001 .

[43]  M. G. Rad,et al.  Influence of charged impurities on the surface phases of Sn/Ge(1 1 1) , 2001 .

[44]  Italy.,et al.  The order-disorder character of the (3x3) to (sqrt3 x sqrt3)R30° phase transition of Sn on Ge(111) , 2001, cond-mat/0103358.

[45]  R. Uhrberg,et al.  Determination of the Sn 4d line shape of the Sn/Ge(111) √3 × √3 and 3x3 surfaces , 2000 .

[46]  F. Himpsel,et al.  Fermi surface of Si ( 111 ) 7 × 7 , 2000 .

[47]  A. Melechko,et al.  Role of defects in two-dimensional phase transitions: An STM study of the Sn/Ge(111) system , 2000 .

[48]  Martin Laurenzis,et al.  Electronic structure of the 6H–SiC(0001)-3×3 surface studied with angle-resolved inverse and direct photoemission , 2000 .

[49]  Rohlfing,et al.  U parameter of the mott-hubbard insulator 6H-SiC(0001)-(sqrt , 2000, Physical review letters.

[50]  Stefano de Gironcoli,et al.  The mechanism for the 3×3 distortion of Sn/Ge(111) , 1999, cond-mat/9912362.

[51]  E. Tosatti,et al.  SiC(0001): a surface Mott-Hubbard insulator , 1999, cond-mat/9903361.

[52]  Plummer,et al.  Defect-mediated condensation of a charge density wave , 1999, Science.

[53]  E. Michel,et al.  Electronic instabilities of the two-dimensional Sn/Ge(111) α-phase , 1999 .

[54]  A. Melechko,et al.  Two-Dimensional Phase Transition Mediated by Extrinsic Defects , 1999 .

[55]  J. Ortega,et al.  MANY-BODY EFFECTS AND THE METAL INSULATOR TRANSITION AT SEMICONDUCTOR SURFACES AND INTERFACES , 1999 .

[56]  R. Feenstra,et al.  SCANNING TUNNELING SPECTROSCOPY OF MOTT-HUBBARD STATES ON THE 6H-SIC(0001)3 X 3 SURFACE , 1999 .

[57]  E. Michel,et al.  DYNAMICAL FLUCTUATIONS AS THE ORIGIN OF A SURFACE PHASE TRANSITION IN SN/GE(111) , 1999 .

[58]  S. Erwin,et al.  STRONGLY CORRELATED ELECTRONS ON A SILICON SURFACE : THEORY OF A MOTT INSULATOR , 1998, cond-mat/9812061.

[59]  F. Bechstedt,et al.  Si-rich SiC(111)/(0001)3×3 and 3×3 surfaces: A Mott-Hubbard picture , 1998 .

[60]  R. Uhrberg,et al.  ELECTRONIC STRUCTURE OF THE 3 3-ALPHA AND 3 3 PERIODICITIES OF SN/GE(111) , 1998 .

[61]  A. Yeyati,et al.  Electron correlation effects at semiconductor surfaces and interfaces: Si(111)-5x5, Si(111)-7x7 and SnGe(111) , 1998 .

[62]  J. Ortega,et al.  Electron correlation effects in the Si(111)-7×7 surface , 1998 .

[63]  E. Michel,et al.  Fermi surface and electronic structure of Pb/Ge(111) , 1998 .

[64]  J. Neugebauer,et al.  Possibility of a Mott-Hubbard ground state for the SiC(0001) surface , 1998 .

[65]  G. Santoro,et al.  Charge-density waves and surface Mott insulators for adlayer structures on semiconductors: Extended Hubbard modeling , 1998, cond-mat/9809016.

[66]  L.-M. Yu,et al.  The$(\sqrt{3}\times\sqrt{3}){\rm R}30^{\circ}$-Reconstructed 6H–SiC(0001): A Semiconducting Surface , 1998 .

[67]  M. Bartkowiak,et al.  Surface Charge Ordering Transition: α Phase of Sn/Ge(111) , 1997 .

[68]  V. Langlais,et al.  Unoccupied surface state on the (√3 × √3) R30° of 6H-SiC(0001) , 1997 .

[69]  P. Krüger,et al.  Ab initio calculations of structural and electronic properties of 6H-SiC(0001) surfaces , 1997 .

[70]  K. Kempa,et al.  Mott Insulating Ground State on a Triangular Surface Lattice , 1997 .

[71]  Joel A. Kubby,et al.  Scanning tunneling microscopy of semiconductor surfaces , 1996 .

[72]  P. Mårtensson,et al.  Surface state on the SiC(0001)-(√3 × √3) surface , 1996 .

[73]  E. Plummer,et al.  Direct observation of a surface charge density wave , 1996, Nature.

[74]  J. Neugebauer,et al.  Theory of the adatom-induced reconstruction of the SiC(0001)√3×√3 surface , 1995 .

[75]  Karlsson,et al.  Metal-semiconductor fluctuation in the Sn adatoms in the Si(111)-Sn and Ge(111)-Sn ( sqrt 3 x sqrt 3)R30 degrees reconstructions. , 1995, Physical review. B, Condensed matter.

[76]  Karlsson,et al.  Clean and Cs-exposed Si(111) sqrt 3 x sqrt 3 :B surface studied with high-resolution photoemission. , 1995, Physical review. B, Condensed matter.

[77]  Pankratov,et al.  Evidence of a bipolaronic, insulating state of Na submonolayer on GaAs(110). , 1995, Physical review. B, Condensed matter.

[78]  P. Mårtensson,et al.  STM study of the SiC(0001) √3 × √3 surface , 1995 .

[79]  M. Hammar,et al.  Adsorption of tin on the Ge(111)-c(2 × 8) surface studied with scanning tunneling microscopy and photoelectron spectroscopy , 1995 .

[80]  N. J. Dinardo,et al.  Electron localization and the nonmetal-to-metal transition at ultrathin alkali-metal/Si(111) interfaces , 1994 .

[81]  Scheffler,et al.  Bound bipolaron at the surface: The negative-U behavior of GaAs(110) with adsorbed alkali metals. , 1993, Physical review letters.

[82]  Chen,et al.  Electron correlation, metallization, and Fermi-level pinning at ultrathin K/Si(111) interfaces. , 1993, Physical review. B, Condensed matter.

[83]  K. Horn,et al.  Overlayer‐induced valence states, and evidence for charge transfer in Na/GaP(110) and Na/GaAs(110): A comparative photoemission study , 1993 .

[84]  Batra,et al.  Absence of metallicity in Cs-GaAs(110): A Hubbard-model study. , 1993, Physical review. B, Condensed matter.

[85]  Karlsson,et al.  Adsorption of potassium on the Si(111) sqrt 3 x sqrt 3 R30 degrees:B surface: Observation of an insulating surface at submonolayer coverage. , 1993, Physical review. B, Condensed matter.

[86]  R. Uhrberg,et al.  Dimer structure of the Si(001)2 × 1 and c(4 × 2) reconstructions derived from core-level and valence-band photoemission results , 1993 .

[87]  Lee,et al.  Free energy and entropy of diffusion by ab initio molecular dynamics: Alkali ions in silicon. , 1993, Physical review letters.

[88]  Ventrice,et al.  K/GaAs(110) interface: Initial stages of growth and the semiconductor-to-metal transition. , 1993, Physical review. B, Condensed matter.

[89]  Scheffler,et al.  Hubbard correlations and charge transfer at the GaAs(110) surface with alkali adsorbates. , 1993, Physical review letters.

[90]  Soukiassian,et al.  Atomic structure, adsorbate ordering, and mode of growth of the K/Si(100)2 x 1 surface. , 1992, Physical Review B (Condensed Matter).

[91]  Scheffler,et al.  Self-consistent pseudopotential calculations for sodium adsorption on GaAs(110). , 1992, Physical review. B, Condensed matter.

[92]  J. Binder,et al.  Photoemission and scanning tunneling microscopy on K/Si(100) , 1992 .

[93]  Karlsson,et al.  Core-level spectroscopy of the clean Si(001) surface: Charge transfer within asymmetric dimers of the 2 x 1 and c(4 x 2) reconstructions. , 1992, Physical review letters.

[94]  C. Bai,et al.  Adsorption of Na on the GaAs(110) Surface Studied by the Field-Ion-Scanning-Tunneling-Microscopy , 1992 .

[95]  Miranda,et al.  Structural and electronic properties of K/Si(100)2 x 1. , 1992, Physical review. B, Condensed matter.

[96]  Zandvliet,et al.  Equilibrium structure of monatomic steps on vicinal Si(001). , 1992, Physical review. B, Condensed matter.

[97]  M. Hammar,et al.  Sn-induced surface reconstructions on the Ge(111) surface studied with scanning tunneling microscopy , 1992 .

[98]  Whitman,et al.  Geometric and electronic properties of Cs structures on III-V (110) surfaces: From 1D and 2D insulators to 3D metals. , 1991, Physical review letters.

[99]  R. Celotta,et al.  Manipulation of Adsorbed Atoms and Creation of New Structures on Room-Temperature Surfaces with a Scanning Tunneling Microscope , 1991, Science.

[100]  Chen,et al.  Surface states and alkali-to-semiconductor charge transfer in the K/Si(111)( sqrt 3 x sqrt 3 )R(30 degrees )-B system. , 1990, Physical review letters.

[101]  Plummer,et al.  Semiconductor-to-metal transition in an ultrathin interface: Cs/GaAs(110). , 1990, Physical review letters.

[102]  Pandey,et al.  Evidence for trimer reconstruction of Si(111) √3 × √3 -Sb: Scanning tunneling microscopy and first-principles theory , 1990 .

[103]  Plummer,et al.  Cs-induced surface state on GaAs(110). , 1990, Physical review. B, Condensed matter.

[104]  Hamers,et al.  Finite-temperature phase diagram of vicinal Si(100) surfaces. , 1990, Physical review letters.

[105]  R. Miranda,et al.  Interaction of potassium with Si(100)2 × 1 , 1990 .

[106]  T. Gentle,et al.  Electronic properties of alkali metal/silicon interfaces: A new picture , 1989 .

[107]  Reihl,et al.  Surface electronic structure of submonolayer to full-monolayer coverages of alkali metals on GaAs(110): K and Cs. , 1989, Physical review. B, Condensed matter.

[108]  E. Kaxiras,et al.  Adsorption of boron on Si(111): Its effect on surface electronic states and reconstruction. , 1989, Physical review letters.

[109]  Yang,et al.  Electronic properties of Na overlayers on the GaAs(110) surface. , 1989, Physical review. B, Condensed matter.

[110]  D. Heskett,et al.  Correlation of alkali metal-induced work function changes on semiconductor and metal surfaces , 1989 .

[111]  R. Celotta,et al.  Structure of Cs on GaAs(110) as determined by scanning tunneling microscopy , 1989 .

[112]  G. Somorjai Physics at surfaces , 1989 .

[113]  D. Heskett,et al.  Non-metallic behavior of cesium on GaAs(100) , 1989 .

[114]  Kono,et al.  Photoelectron diffraction study of Si(001)2 x 1-K surface: Existence of a potassium double layer. , 1988, Physical review. B, Condensed matter.

[115]  Andrew Zangwill,et al.  Physics at Surfaces: Physisorption , 1988 .

[116]  Suzuki,et al.  Angle-resolved photoelectron-spectroscopy study of the Si(001)2 x 1-K surface. , 1987, Physical review. B, Condensed matter.

[117]  Fowler Wb,et al.  Polarization and the Haldane-Anderson model of defects in nonmetals. , 1986 .

[118]  E. Louis,et al.  Correlation and electron-phonon effects in the (111)-silicon dangling-bond surface states , 1986 .

[119]  Freeman,et al.  Adsorbate-induced shifts of electronic surface states: Cs on the (100) faces of tungsten, molybdenum, and tantalum. , 1985, Physical review. B, Condensed matter.

[120]  Harrison Coulomb interactions in semiconductors and insulators. , 1985, Physical review. B, Condensed matter.

[121]  E. Tosatti,et al.  Electron-phonon coupling and surface-state polarons on Si(111)2×1 , 1984 .

[122]  T. Aruga,et al.  Measurement of Overlayer-Plasmon Dispersion in K Chains Adsorbed on Si(001)2×1 , 1984 .

[123]  N. H. March,et al.  Metal-insulator transition in hydrogen and in expanded alkali metals , 1984 .