Modeling assignment-based pairwise comparisons within integrated framework for value-driven multiple criteria sorting

We introduce a new preference disaggregation modeling formulations for multiple criteria sorting with a set of additive value functions. The preference information supplied by the Decision Maker (DM) is composed of: (1) possibly imprecise assignment examples, (2) desired class cardinalities, and (3) assignment-based pairwise comparisons. The latter have the form of imprecise statements referring to the desired assignments for pairs of alternatives, but without specifying any concrete class. Additionally, we account for preferences concerning the shape of the marginal value functions and desired comprehensive values of alternatives assigned to a given class or class range. The exploitation of all value functions compatible with these preferences results in three types of results: (1) necessary and possible assignments, (2) extreme class cardinalities, and (3) necessary and possible assignment-based preference relations. These outputs correspond to different types of admitted preference information. By exhibiting different outcomes, we encourage the DM in various ways to enrich her/his preference information interactively. The applicability of the framework is demonstrated on data involving the classification of cities into liveability classes.

[1]  Salvatore Greco,et al.  Multiple criteria sorting with a set of additive value functions , 2010, Eur. J. Oper. Res..

[2]  Philippe Fortemps,et al.  ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements , 2010, Eur. J. Oper. Res..

[3]  Evangelos Grigoroudis,et al.  A multicriteria accreditation system for information technology skills and qualifications , 2007, Eur. J. Oper. Res..

[4]  Murat Köksalan,et al.  An interactive sorting method for additive utility functions , 2009, Comput. Oper. Res..

[5]  George Mavrotas,et al.  Combined MCDA–IP Approach for Project Selection in the Electricity Market , 2003, Ann. Oper. Res..

[6]  Milosz Kadzinski,et al.  Robust Ordinal Regression for Dominance-based Rough Set Approach to multiple criteria sorting , 2014, Inf. Sci..

[7]  Patrick Meyer,et al.  Formalizing and solving the problem of clustering in MCDA , 2013, Eur. J. Oper. Res..

[8]  Milosz Kadzinski,et al.  Selection of a representative value function in robust multiple criteria sorting , 2011, Comput. Oper. Res..

[9]  Irène Abi-Zeid,et al.  A Multi‐Criteria Classification Approach for Identifying Favourable Climates for Tourism , 2014 .

[10]  Isabella Maria Lami,et al.  Addressing the location of undesirable facilities through the Dominance based Rough Set Approach . , 2011 .

[11]  V. Hontou,et al.  A multi-criteria approach to burden sharing among industrial branches for combating climate change , 2003 .

[12]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[13]  Y. Zhang,et al.  Regularized estimation for preference disaggregation in multiple criteria decision making , 2009 .

[14]  Constantin Zopounidis,et al.  Inferring robust decision models in multicriteria classification problems: An experimental analysis , 2014, Eur. J. Oper. Res..

[15]  Milosz Kadzinski,et al.  Stochastic ordinal regression for multiple criteria sorting problems , 2013, Decis. Support Syst..

[16]  José Rui Figueira,et al.  A Multiple Criteria Decision Analysis Model Based on ELECTRE TRI-C for Erosion Risk Assessment in Agricultural Areas , 2014, Environmental Modeling & Assessment.

[17]  Vincenzo Ilario Carbone,et al.  An Application of ELECTRE Tri to Support Innovation , 2014 .

[18]  Constantin Zopounidis,et al.  The use of a preference disaggregation method in energy analysis and policy making , 1999 .

[19]  Ahti Salo,et al.  Preference Programming with incomplete ordinal information , 2013, Eur. J. Oper. Res..

[20]  Patrick Meyer,et al.  Diviz: A software for modeling, processing and sharing algorithmic workflows in MCDA , 2012, Intell. Decis. Technol..

[21]  Luis C. Dias,et al.  Dealing with inconsistent judgments in multiple criteria sorting models , 2006, 4OR.

[22]  N. Belacel,et al.  PROAFTN: a fuzzy assignment method to grade bladder cancer malignancy using features generated by computer-assisted image analysis , 2000 .

[23]  Miøosz Kadzi,et al.  DIS-CARD: a new method of multiple criteria sorting to classes with desired cardinality , 2013 .

[24]  J. Figueira,et al.  Robust multi-criteria sorting with the outranking preference model and characteristic profiles , 2015 .

[25]  C. Zopounidis,et al.  Building additive utilities for multi-group hierarchical discrimination: the M.H.Dis method , 2000 .

[26]  Luis C. Dias,et al.  On the Notion of Category Size in Multiple Criteria Sorting Models , 2005 .

[27]  Milosz Kadzinski,et al.  Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP , 2012, Decis. Support Syst..

[28]  S. Greco,et al.  Selection of a Representative Value Function for Robust Ordinal Regression in Group Decision Making , 2013 .

[29]  Yen-Liang Chen,et al.  A New Approach to the Group Ranking Problem: Finding Consensus Ordered Segments from Users' Preference Data , 2013, Decis. Sci..

[30]  John Psarras,et al.  A multicriteria methodology for equity selection using financial analysis , 2009, Comput. Oper. Res..

[31]  Milosz Kadzinski,et al.  Preferential reducts and constructs in robust multiple criteria ranking and sorting , 2014, OR Spectr..

[32]  Raimo P. Hämäläinen,et al.  Preference ratios in multiattribute evaluation (PRIME)-elicitation and decision procedures under incomplete information , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[33]  Constantin Zopounidis,et al.  A Multicriteria Outranking Modeling Approach for Credit Rating , 2011, Decis. Sci..

[34]  Salvatore Greco,et al.  Robust ordinal regression for multiple criteria group decision: UTA GMS -GROUP and , 2012 .

[35]  Tommi Tervonen,et al.  Preference inference with general additive value models and holistic pair-wise statements , 2014, Eur. J. Oper. Res..