Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites

Simple models for the thermal conductivity enhancements in carbon nanotube (CNT) composites are presented as analytical functions of volume fraction, anisotropic thermal conductivities, aspect ratio, nonstraightness, and interfacial thermal resistance of the CNTs. The model predictions agree very well with the measured thermal conductivities of CNT composites available in the literature. It is shown that using CNTs with higher aspect and straightness ratios is an efficient means to get much better thermal conductivity enhancements for CNT composites. The models are further extended to account the effects of either the random or aligned orientation of CNTs and the interaction among CNTs on thermal conductivity of CNT composites.

[1]  Klaas Nicolay,et al.  Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. , 2006, Nano letters.

[2]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[3]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[4]  C. Nan,et al.  A simple model for thermal conductivity of carbon nanotube-based composites , 2003 .

[5]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[6]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[7]  Quanshui Zheng,et al.  An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution , 2001 .

[8]  Ce-Wen Nan,et al.  Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model , 1998 .

[9]  Q. Zheng,et al.  A further exploration of the interaction direct derivative (IDD) estimate for the effective properties of multiphase composites taking into account inclusion distribution , 2002 .

[10]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[11]  G. Milton The Theory of Composites , 2002 .

[12]  D. Young,et al.  Anisotropy of thermal conductance in near-ideal graphite , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[14]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[15]  Huaqing Xie,et al.  Measuring the thermal conductivity of a single carbon nanotube. , 2005, Physical review letters.

[16]  B. T. Kelly,et al.  Physics of Graphite , 1981 .

[17]  Tungyang Chen,et al.  Effect of Kapitza contact and consideration of tube-end transport on the effective conductivity in nanotube-based composites , 2005 .

[18]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[19]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .