On Approximate KKT Condition and its Extension to Continuous Variational Inequalities

In this work, we introduce a necessary sequential Approximate-Karush-Kuhn-Tucker (AKKT) condition for a point to be a solution of a continuous variational inequality, and we prove its relation with the Approximate Gradient Projection condition (AGP) of Gárciga-Otero and Svaiter. We also prove that a slight variation of the AKKT condition is sufficient for a convex problem, either for variational inequalities or optimization. Sequential necessary conditions are more suitable to iterative methods than usual punctual conditions relying on constraint qualifications. The AKKT property holds at a solution independently of the fulfillment of a constraint qualification, but when a weak one holds, we can guarantee the validity of the KKT conditions.

[1]  Benar Fux Svaiter,et al.  A Practical Optimality Condition Without Constraint Qualifications for Nonlinear Programming , 2003 .

[2]  J. Abadie ON THE KUHN-TUCKER THEOREM. , 1966 .

[3]  R. Andreani,et al.  On the Relation between Constant Positive Linear Dependence Condition and Quasinormality Constraint Qualification , 2005 .

[4]  J. M. Martínez,et al.  Inexact-Restoration Algorithm for Constrained Optimization1 , 2000 .

[5]  Robert G. Jeroslow,et al.  Review: Magnus R. Hestenes, Optimization theory, the finite dimensional case , 1977 .

[6]  R. J. Paul,et al.  Optimization Theory: The Finite Dimensional Case , 1977 .

[7]  Benar Fux Svaiter,et al.  New Condition Characterizing the Solutions of Variational Inequality Problems , 2008 .

[8]  José Mario Martínez,et al.  Inexact Restoration Methods for Nonlinear Programming: Advances and Perspectives , 2005 .

[9]  Alfredo N. Iusem,et al.  Augmented Lagrangian methods for variational inequality problems , 2010, RAIRO Oper. Res..

[10]  Zengxin Wei,et al.  On the Constant Positive Linear Dependence Condition and Its Application to SQP Methods , 1999, SIAM J. Optim..

[11]  J. M. Martínez,et al.  Inexact-Restoration Method with Lagrangian Tangent Decrease and New Merit Function for Nonlinear Programming , 2001 .

[12]  Letizia Pellegrini,et al.  On Regularity for Constrained Extremum Problems. Part 1: Sufficient Optimality Conditions , 2009, J. Optimization Theory and Applications.

[13]  K. Jittorntrum Solution point differentiability without strict complementarity in nonlinear programming , 1984 .

[14]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[15]  L. Pellegrini,et al.  On Regularity for Constrained Extremum Problems , 2007 .

[16]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[17]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[18]  José Mario Martínez,et al.  On Augmented Lagrangian Methods with General Lower-Level Constraints , 2007, SIAM J. Optim..

[19]  Letizia Pellegrini,et al.  On Regularity for Constrained Extremum Problems. Part 2: Necessary Optimality Conditions , 2009, J. Optimization Theory and Applications.

[20]  J. M. Martínez,et al.  On sequential optimality conditions for smooth constrained optimization , 2011 .

[21]  Marc Teboulle,et al.  Lagrangian Duality and Related Multiplier Methods for Variational Inequality Problems , 1999, SIAM J. Optim..

[22]  Franco Giannessi,et al.  Separation of sets and optimality conditions , 2005 .

[23]  J. M. Martínez,et al.  On second-order optimality conditions for nonlinear programming , 2007 .

[24]  José Mario Martínez Pérez,et al.  Metodos de lagrangiano aumentado com convergencia utilizando a condição de dependencia linear positiva constante , 2006 .

[25]  Kok Lay Teo,et al.  Optimization and control with applications , 2005 .

[26]  R. Janin Directional derivative of the marginal function in nonlinear programming , 1984 .

[27]  José Mario Martínez Pérez,et al.  Condições sequenciais de otimalidade , 2009 .