Inconsistency Handling in Ontology-Mediated Query Answering

The problem of querying description logic knowledge bases using database-style queries (in particular, conjunctive queries) has been a major focus of recent description logic research. An important issue that arises in this context is how to handle the case in which the data is inconsistent with the ontology. Indeed, since in classical logic an inconsistent logical theory implies every formula, inconsistency-tolerant semantics are needed to obtain meaningful answers. This thesis aims to develop methods for dealing with inconsistent description logic knowledge bases using three natural semantics (AR, IAR, and brave) previously proposed in the literature and that rely on the notion of a repair, which is an inclusion-maximal subset of the data consistent with the ontology. In our framework, these three semantics are used conjointly to identify answers with different levels of confidence. In addition to developing efficient algorithms for query answering over inconsistent DL-Lite knowledge bases, we address three problems that should support the adoption of this framework: (i) query result explanation, to help the user to understand why a given answer was (not) obtained under one of the three semantics, (ii) query-driven repairing, to exploit user feedback about errors or omissions in the query results to improve the data quality, and (iii) preferred repair semantics, to take into account the reliability of the data. For each of these three topics, we developed a formal framework, analyzed the complexity of the relevant reasoning problems, and proposed and implemented algorithms, which we empirically studied over an inconsistent DL-Lite benchmark we built. Our results indicate that even if the problems related to dealing with inconsistent DL-Lite knowledge bases are theoretically hard, they can often be solved efficiently in practice by using tractable approximations and features of modern SAT solvers.

[1]  Abdallah Arioua,et al.  Query Failure Explanation in Inconsistent Knowledge Bases Using Argumentation , 2014, COMMA.

[2]  Meghyn Bienvenu,et al.  On the Complexity of Consistent Query Answering in the Presence of Simple Ontologies , 2012, AAAI.

[3]  Georg Gottlob,et al.  The complexity of logic-based abduction , 1993, JACM.

[4]  Thomas Lukasiewicz,et al.  Inconsistency Handling in Datalog+/- Ontologies , 2012, ECAI.

[5]  Abdallah Arioua,et al.  Dialectical Characterization of Consistent Query Explanation with Existential Rules , 2016, FLAIRS Conference.

[6]  Thomas Eiter,et al.  Query Rewriting for Horn-SHIQ Plus Rules , 2012, AAAI.

[7]  Rafael Peñaloza,et al.  Pinpointing in the Description Logic EL , 2007, Description Logics.

[8]  Guilin Qi,et al.  A Possibilistic Extension of Description Logics , 2007, Description Logics.

[9]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[10]  Michaël Thomazo,et al.  Conjunctive Query Answering Under Existential Rules - Decidability, Complexity, and Algorithms , 2013 .

[11]  Michaël Thomazo Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Compact Rewritings for Existential Rules ∗ , 2022 .

[12]  Jianfeng Du,et al.  Towards Tractable and Practical ABox Abduction over Inconsistent Description Logic Ontologies , 2015, AAAI.

[13]  Stefan Schlobach,et al.  Non-Standard Reasoning Services for the Debugging of Description Logic Terminologies , 2003, IJCAI.

[14]  Carsten Lutz,et al.  Probabilistic Description Logics for Subjective Uncertainty , 2010, KR.

[15]  Thomas Lukasiewicz,et al.  From Classical to Consistent Query Answering under Existential Rules , 2015, AMW.

[16]  Melanie Herschel,et al.  Query-Based Why-Not Provenance with NedExplain , 2014, EDBT.

[17]  Thomas Lukasiewicz,et al.  Generalized Consistent Query Answering under Existential Rules , 2016, KR.

[18]  Leopoldo E. Bertossi,et al.  Database Repairing and Consistent Query Answering , 2011, Database Repairing and Consistent Query Answering.

[19]  Riccardo Rosati,et al.  On the Complexity of Dealing with Inconsistency in Description Logic Ontologies , 2011, IJCAI.

[20]  Jean-François Baget,et al.  On rules with existential variables: Walking the decidability line , 2011, Artif. Intell..

[21]  Boris Motik,et al.  Efficient Query Answering for OWL 2 , 2009, SEMWEB.

[22]  Diego Calvanese,et al.  Verification of Generalized Inconsistency-Aware Knowledge and Action Bases , 2015, IJCAI.

[23]  Abdallah Arioua,et al.  Query Answering Explanation in Inconsistent Datalog +/- Knowledge Bases , 2015, DEXA.

[24]  Frank van Harmelen,et al.  A Framework for Handling Inconsistency in Changing Ontologies , 2005, SEMWEB.

[25]  François Goasdoué,et al.  Teaching an RDBMS about ontological constraints , 2016, Proc. VLDB Endow..

[26]  Riccardo Rosati,et al.  Improving Query Answering over DL-Lite Ontologies , 2010, KR.

[27]  Paolo Liberatore,et al.  Redundancy in logic I: CNF propositional formulae , 2002, Artif. Intell..

[28]  Bijan Parsia,et al.  Extracting Justifications from BioPortal Ontologies , 2012, International Semantic Web Conference.

[29]  Thomas Lukasiewicz,et al.  Complexity of Inconsistency-Tolerant Query Answering in Datalog+/- under Cardinality-Based Repairs , 2019, SEBD.

[30]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[31]  Deborah L. McGuinness,et al.  Explaining Subsumption in Description Logics , 1995, IJCAI.

[32]  Jeff Z. Pan,et al.  Handling uncertainty: An extension of DL-Lite with Subjective Logic , 2015, Description Logics.

[33]  Ian Horrocks,et al.  Ontology Integration Using Mappings: Towards Getting the Right Logical Consequences , 2009, ESWC.

[34]  Jan Chomicki,et al.  Consistent Query Answering: Five Easy Pieces , 2007, ICDT.

[35]  Michael Zakharyaschev,et al.  Ontology-Based Data Access: Ontop of Databases , 2013, SEMWEB.

[36]  Ian Horrocks,et al.  Supporting concurrent ontology development: Framework, algorithms and tool , 2011, Data Knowl. Eng..

[37]  Jeff Heflin,et al.  LUBM: A benchmark for OWL knowledge base systems , 2005, J. Web Semant..

[38]  Diego Calvanese,et al.  Evolution of DL-Lite Knowledge Bases , 2010, SEMWEB.

[39]  François Goasdoué,et al.  Explaining Inconsistency-Tolerant Query Answering over Description Logic Knowledge Bases , 2016, AAAI.

[40]  Jan Chomicki,et al.  Hippo: A System for Computing Consistent Answers to a Class of SQL Queries , 2004, EDBT.

[41]  M. Tamer Özsu Synthesis Lectures on Data Management , 2010 .

[42]  Boris Motik,et al.  Reasoning in Description Logics by a Reduction to Disjunctive Datalog , 2007, Journal of Automated Reasoning.

[43]  Ian Horrocks,et al.  Explaining ALC Subsumption , 2000, Description Logics.

[44]  Leopoldo E. Bertossi,et al.  Complexity of Consistent Query Answering in Databases Under Cardinality-Based and Incremental Repair Semantics , 2006, ICDT.

[45]  Jens Lehmann,et al.  Test-driven evaluation of linked data quality , 2014, WWW.

[46]  Jan Chomicki,et al.  Computing consistent query answers using conflict hypergraphs , 2004, CIKM '04.

[47]  Andrea Calì,et al.  On the decidability and complexity of query answering over inconsistent and incomplete databases , 2003, PODS.

[48]  Riccardo Rosati,et al.  Evaluation of Techniques for Inconsistency Handling in OWL 2 QL Ontologies , 2012, International Semantic Web Conference.

[49]  Jean Christoph Jung,et al.  Ontology-Based Access to Probabilistic Data with OWL QL , 2012, SEMWEB.

[50]  Giorgos Stoilos,et al.  Incremental Query Rewriting for OWL 2 QL , 2012, Description Logics.

[51]  Salem Benferhat,et al.  Non Defeated-Based Repair in Possibilistic DL-Lite Knowledge Bases , 2015, FLAIRS.

[52]  Leopoldo E. Bertossi,et al.  The consistency extractor system: Answer set programs for consistent query answering in databases , 2010, Data Knowl. Eng..

[53]  G. Gottlob,et al.  Query Answering in the Description Logic Horn-SHIQ ⋆ , 2008 .

[54]  Abdallah Arioua,et al.  On Conceptual Graphs and Explanation of Query Answering under Inconsistency , 2014, ICCS.

[55]  Sebastian Rudolph,et al.  Walking the Complexity Lines for Generalized Guarded Existential Rules , 2011, IJCAI.

[56]  Abdallah Arioua,et al.  A Dialectical Proof Theory for Universal Acceptance in Coherent Logic-Based Argumentation Frameworks , 2016, ECAI.

[57]  Frank van Harmelen,et al.  Reasoning with Inconsistent Ontologies , 2005, IJCAI.

[58]  François Goasdoué,et al.  Efficient Query Answering in DL-Lite through FOL Reformulation (Extended Abstract) , 2015, Description Logics.

[59]  Renée J. Miller,et al.  ConQuer: efficient management of inconsistent databases , 2005, SIGMOD '05.

[60]  Ronald Fagin,et al.  On the semantics of updates in databases , 1983, PODS.

[61]  Rafael Peñaloza,et al.  Complexity of Axiom Pinpointing in the DL-Lite Family , 2010, Description Logics.

[62]  Giorgio Orsi,et al.  Query Rewriting and Optimization for Ontological Databases , 2014, TODS.

[63]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[64]  Jakub Závodný,et al.  Factorised representations of query results: size bounds and readability , 2012, ICDT '12.

[65]  Diego Calvanese,et al.  Handling Inconsistencies Due to Class Disjointness in SPARQL Updates , 2016, ESWC.

[66]  Claudio Gutiérrez,et al.  RDFS Update: From Theory to Practice , 2011, ESWC.

[67]  Bernardo Cuenca Grau,et al.  OWL 2 Web Ontology Language: Profiles , 2009 .

[68]  Samantha Bail,et al.  The Cognitive Complexity of OWL Justifications , 2011, Description Logics.

[69]  Roberto Sebastiani,et al.  Axiom Pinpointing in Lightweight Description Logics via Horn-SAT Encoding and Conflict Analysis , 2009, CADE.

[70]  Carsten Lutz,et al.  The Combined Approach to OBDA: Taming Role Hierarchies using Filters , 2012, SSWS+HPCSW@ISWC.

[71]  Jianfeng Du,et al.  A Tractable Approach to ABox Abduction over Description Logic Ontologies , 2014, AAAI.

[72]  Jianfeng Du,et al.  Weight-based consistent query answering over inconsistent SHIQ knowledge bases , .

[73]  Jan Chomicki,et al.  Consistent query answers in inconsistent databases , 1999, PODS '99.

[74]  Samantha Bail,et al.  The logical diversity of explanations in OWL ontologies , 2013, CIKM.

[75]  Georg Gottlob NP trees and Carnap's modal logic , 1995, JACM.

[76]  Maurizio Lenzerini,et al.  Query Rewriting for Inconsistent DL-Lite Ontologies , 2011, RR.

[77]  Sebastian Rudolph,et al.  Extending Decidable Existential Rules by Joining Acyclicity and Guardedness , 2011, IJCAI.

[78]  Madalina Croitoru,et al.  A General Modifier-Based Framework for Inconsistency-Tolerant Query Answering , 2016, KR.

[79]  François Goasdoué,et al.  Querying Inconsistent Description Logic Knowledge Bases under Preferred Repair Semantics , 2014, Description Logics.

[80]  Jianfeng Du,et al.  Towards Scalable and Complete Query Explanation with OWL 2 EL Ontologies , 2015, CIKM.

[81]  Manfred Jaeger,et al.  Probabilistic Reasoning in Terminological Logics , 1994, KR.

[82]  Maurizio Lenzerini,et al.  Inconsistency-Tolerant Semantics for Description Logics , 2010, RR.

[83]  Tova Milo,et al.  QOCO: A Query Oriented Data Cleaning System with Oracles , 2015, Proc. VLDB Endow..

[84]  Riccardo Rosati,et al.  Tractable Approximations of Consistent Query Answering for Robust Ontology-based Data Access , 2013, IJCAI.

[85]  Heiner Stuckenschmidt,et al.  Supporting Manual Mapping Revision using Logical Reasoning , 2008, AAAI.

[86]  Bernhard Nebel,et al.  Belief Revision and Default Reasoning: Syntax-Based Approaches , 1991, KR.

[87]  Giorgos B. Stamou,et al.  Optimized Query Rewriting for OWL 2 QL , 2011, CADE.

[88]  Emanuel Sallinger,et al.  Distance-Bounded Consistent Query Answering , 2015, IJCAI.

[89]  Renée J. Miller,et al.  First-order query rewriting for inconsistent databases , 2005, J. Comput. Syst. Sci..