Meta-learning System for Automated Clustering

[1]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[2]  Francisco de A. T. de Carvalho,et al.  An Analysis of Meta-learning Techniques for Ranking Clustering Algorithms Applied to Artificial Data , 2009, ICANN.

[3]  Hendrik Blockeel,et al.  Using internal validity measures to compare clustering algorithms , 2015, ICML 2015.

[4]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[5]  Leandro Nunes de Castro,et al.  Clustering algorithm selection by meta-learning systems: A new distance-based problem characterization and ranking combination methods , 2015, Inf. Sci..

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  Leandro Nunes de Castro,et al.  Clustering Algorithm Recommendation: A Meta-learning Approach , 2012, SEMCCO.

[8]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[9]  Lior Rokach,et al.  Clustering Methods , 2005, The Data Mining and Knowledge Discovery Handbook.

[10]  Daniel J. Rosenkrantz,et al.  An analysis of several heuristics for the traveling salesman problem , 2013, Fundamental Problems in Computing.

[11]  Huan Liu,et al.  Feature Selection for Clustering: A Review , 2018, Data Clustering: Algorithms and Applications.

[12]  Alexander Schliep,et al.  Ranking and selecting clustering algorithms using a meta-learning approach , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[13]  Andrey Filchenkov,et al.  Towards cluster validity index evaluation and selection , 2016, 2016 IEEE Artificial Intelligence and Natural Language Conference (AINL).