Examples of the application of computational fluid dynamics simulation to mine and tunnel ventilation

With the advent of faster micro-processors, the use of numerical methods to simulate complex fluid dynamic phenomena in three dimensions for use in design has become prevalent in the automotive, and turbo-machinery industries. The Computational Fluid Dynamics (CFD) method divides the region of interest into small control volumes which form the mesh representing the physical characteristics of the problem, and uses the finite volume method to intergrate the equations for the conservation of mass, momentum, energy and species over each control volume. Recent developments in CFD software expedite mesh generation, and enable the use of unstructured grids, comprised of tetrahedral volumes in three dimensions and triangular areas in two. CFD more accurately represents complex geometries and allows for relative movement of meshes enabling simulation of multiple moving bodies. This paper presents two examples of how CFD simulation can be used to assess mine and tunnel ventilation problems formerly addressed by application of analytical solutions which were developed assuming ideal incompressible conditions. CFD simulation is used to evaluate the impact of varying the airflow in a descentionally ventilated airway on the layering along the roof of smoke and hot gases resulting from a vehicle fire. Control of the smoke layer ismore » required to enable safe egress from the vehicle, particularly if the vehicle is for personnel transport, and to ensure control of the fire contaminants throughout the ventilation system. An evaluation of the pressures, generated as a vehicle enters a tunnel portal, using CFD simulation, is also presented for unflared and flared portal configurations. These simulation results are compared with predictions derived using an analytical method which assumes one-dimensional and incompressible flow. Results of the CFD simulation are presented in an animated video format.« less