Construction, analysis, and modeling of complex reaction networks with RING

University of Minnesota Ph.D. Thesis. August 2013. Major: Chemical Engineering. Advisors: Prodromos Daoutidis and Aditya Bhan. 1 computer file (PDF); xviii, 210 pages.

[1]  L. Broadbelt,et al.  Automated mechanism generation. Part 1: mechanism development and rate constant estimation for VOC chemistry in the atmosphere , 2009 .

[2]  Pierre Baldi,et al.  No Electron Left Behind: A Rule-Based Expert System To Predict Chemical Reactions and Reaction Mechanisms , 2009, J. Chem. Inf. Model..

[3]  Keith T. Taylor,et al.  ROBIA: a reaction prediction program. , 2005, Organic letters.

[4]  A. I. Torres,et al.  Engineering Biomass Conversion Processes: A Systems Perspective , 2013 .

[5]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[6]  D. Mohan,et al.  Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review , 2006 .

[7]  Raymond S H Yang,et al.  Biochemical reaction network modeling: predicting metabolism of organic chemical mixtures. , 2005, Environmental science & technology.

[8]  Prodromos Daoutidis,et al.  Rule-Based Generation of Thermochemical Routes to Biomass Conversion , 2010 .

[9]  S. Narayanan,et al.  Thermal Cracking of Ethane and Ethane-Propane Mixtures , 1976 .

[10]  James Dugundji,et al.  An algebraic model of constitutional chemistry as a basis for chemical computer programs , 1973 .

[11]  J. Dumesic,et al.  2-Methylhexane Cracking on Y Zeolites: Catalytic Cycles and Reaction Selectivity , 1997 .

[12]  Prodromos Daoutidis,et al.  Language-oriented rule-based reaction network generation and analysis: Description of RING , 2012, Comput. Chem. Eng..

[13]  Linda J Broadbelt,et al.  Unraveling reaction pathways and specifying reaction kinetics for complex systems. , 2012, Annual review of chemical and biomolecular engineering.

[14]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[15]  Adalbert Kerber,et al.  Molecules in Silico: A Graph Description of Chemical Reactions , 2007, J. Chem. Inf. Model..

[16]  M. Jenkin,et al.  The tropospheric degradation of volatile organic compounds: a protocol for mechanism development , 1997 .

[17]  Francesc Rosselló,et al.  Graph Transformation in Molecular Biology , 2005, Formal Methods in Software and Systems Modeling.

[18]  M. Reuss,et al.  In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. , 1997, Biotechnology and bioengineering.

[19]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[20]  Jonathan M. Goodman,et al.  The ROBIA Program for Predicting Organic Reactivity , 2006, Journal of Chemical Information and Modeling.

[21]  L. Broadbelt,et al.  Detailed Kinetic Modeling of Silicon Nanoparticle Formation Chemistry via Automated Mechanism Generation , 2004 .

[22]  Andreas Dietz,et al.  Models, concepts, theories, and formal languages in chemistry and their use as a basis for computer assistance in chemistry , 1994, Journal of chemical information and computer sciences.

[23]  Venkat Venkatasubramanian,et al.  Microkinetic modeling of propane aromatization over HZSM-5 , 2005 .

[24]  T. Ho Kinetic Modeling of Large‐Scale Reaction Systems , 2008 .

[25]  J. B. Hendrickson The SYNGEN approach to synthesis design , 2010 .

[26]  A. Corma,et al.  Biomass to chemicals : Catalytic conversion of glycerol/water mixtures into acrolein, reaction network , 2008 .

[27]  Rainer Herges,et al.  Computer-assisted solution of chemical problems : the historical development and the present state of the art of a new discipline of chemistry , 1993 .

[28]  E. Corey,et al.  Computer-assisted analysis in organic synthesis. , 1985, Science.