Application of CuNi–CeO2 fuel electrode in oxygen electrode supported reversible solid oxide cell

[1]  Z. Wen,et al.  Highly cycle-stable and robust reversible protonic ceramic cells with air electrode supported structure enabled by single-step co-firing and infiltration , 2022, Journal of Power Sources.

[2]  Shao-Long Wang,et al.  Investigation of La0.6Sr0.4Co1-xNixO3-δ (x=0, 0.2, 0.4, 0.6, 0.8) catalysts on solid oxide fuel cells anode for biogas dry reforming , 2022, International Journal of Hydrogen Energy.

[3]  Shao-Long Wang,et al.  A cathode-supported solid oxide fuel cell prepared by the phase-inversion tape casting and impregnating method , 2022, International Journal of Hydrogen Energy.

[4]  Abdoulaye Djire,et al.  Review and analysis of the hydrogen production technologies from a safety perspective , 2022, International Journal of Hydrogen Energy.

[5]  Kazunori Sato,et al.  Cobalt Alloying Effect on Improvement of Ni/YSZ Anode-Supported Solid Oxide Fuel Cell Operating with Dry Methane , 2021, MATERIALS TRANSACTIONS.

[6]  C. Gaudio,et al.  Multi-functional, high-performing fuel electrode for dry methane oxidation and CO2 electrolysis in Reversible Solid Oxide Cells , 2021 .

[7]  Shao-Long Wang,et al.  A promising strontium and cobalt-free air electrode Pr1-xCaxFeO3-δ for solid oxide electrolysis cell , 2021, International Journal of Hydrogen Energy.

[8]  Z. Wen,et al.  A robust air electrode supported proton-conducting reversible solid oxide cells prepared by low temperature co-sintering , 2021 .

[9]  S. Barnett,et al.  Characteristics of Oxygen Electrode Supported Reversible Solid Oxide Cells , 2021 .

[10]  Fujun Zhang,et al.  Thermodynamic analysis and experimental study of electrode reactions and open circuit voltages for methane-fuelled SOFC , 2020 .

[11]  M. Mogensen Materials for reversible solid oxide cells , 2020, Current Opinion in Electrochemistry.

[12]  Zongping Shao,et al.  Direct-methane solid oxide fuel cells with an in situ formed Ni–Fe alloy composite catalyst layer over Ni–YSZ anodes , 2020 .

[13]  Z. Wen,et al.  Tailoring a micro-nanostructured electrolyte-oxygen electrode interface for proton-conducting reversible solid oxide cells , 2020 .

[14]  S. Khalilarya,et al.  Comprehensive comparison of SOFCs with proton-conducting electrolyte and oxygen ion-conducting electrolyte: Thermoeconomic analysis and multi-objective optimization , 2020 .

[15]  Chang-jiu Li,et al.  Advanced oxygen-electrode-supported solid oxide electrochemical cells with Sr(Ti,Fe)O3−δ-based fuel electrodes for electricity generation and hydrogen production , 2020, Journal of Materials Chemistry A.

[16]  M. H. Mohamed,et al.  Performance analysis of hollow fibre-based micro-tubular solid oxide fuel cell utilising methane fuel , 2019, International Journal of Hydrogen Energy.

[17]  François Maréchal,et al.  Reversible solid oxide systems for energy and chemical applications – Review & perspectives , 2019, Journal of Energy Storage.

[18]  P. Su,et al.  Nanomaterials and technologies for low temperature solid oxide fuel cells : Recent advances, challenges and opportunities , 2018 .

[19]  Yongliang Zhang,et al.  Infiltration of La0·6Sr0·4FeO3-δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell , 2017 .

[20]  Chusheng Chen,et al.  Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology , 2017 .

[21]  Yifei Wang,et al.  A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell , 2017 .

[22]  Ellen Ivers-Tiffée,et al.  Evaluation of electrochemical impedance spectra by the distribution of relaxation times , 2017 .

[23]  John T. S. Irvine,et al.  Switching on electrocatalytic activity in solid oxide cells , 2016, Nature.

[24]  Ting Hei Wan,et al.  Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools , 2015 .

[25]  Guoying Chen,et al.  Long-term stability of metal-supported solid oxide fuel cells employing infiltrated electrodes , 2015 .

[26]  Shaolan Wang,et al.  Performance of the nano-structured Cu–Ni (alloy) -CeO2 anode for solid oxide fuel cells , 2015 .

[27]  X. Ye,et al.  Infiltrated porous YSZ as a cathode active layer for cathode-supported solid oxide fuel cells , 2014 .

[28]  X. Ye,et al.  La0·8Sr0·2Cr0·5Fe0·5O3-d as anode material on cathode-support SOFCs for direct hydrocarbon utilisation , 2014 .

[29]  Zongping Shao,et al.  Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. , 2013, Chemical reviews.

[30]  F. Tietz,et al.  Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation , 2013 .

[31]  L. Shao,et al.  A promising direct carbon fuel cell based on the cathode-supported tubular solid oxide fuel cell technology , 2012 .

[32]  G. Guan,et al.  Performance of cathode-supported SOFC with Ni0.5Cu0.5–CGO anode operated in humidified hydrogen and in low-concentration dry methane , 2012, Journal of Solid State Electrochemistry.

[33]  X. Ye,et al.  High-performance cathode-supported solid oxide fuel cells with copper cermet anodes , 2011 .

[34]  M. Gross,et al.  Electrical properties and redox stability of tantalum-doped strontium titanate for SOFC anodes , 2011 .

[35]  Ellen Ivers-Tiffée,et al.  SOFC Modeling and Parameter Identification by Means of Impedance Spectroscopy , 2010 .

[36]  K. B. Yoo,et al.  Performance of La-doped strontium titanate (LST) anode on LaGaO3-based SOFC , 2009 .

[37]  Nigel P. Brandon,et al.  High performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane , 2007 .

[38]  Wang Shaoliang,et al.  Preparation and performance of a Cu–CeO2–ScSZ composite anode for SOFCs running on ethanol fuel , 2007 .

[39]  Raymond J. Gorte,et al.  A Study of SOFC Anodes Based on Cu-Ni and Cu-Co Bimetallics in CeO2 ­ YSZ , 2004 .

[40]  Hee Chun Lim,et al.  Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel , 2002 .

[41]  Kevin Kendall,et al.  Effects of dilution on methane entering an SOFC anode , 2002 .

[42]  T. Ishihara Nickel–Gd-doped CeO2 cermet anode for intermediate temperature operating solid oxide fuel cells using LaGaO3-based perovskite electrolyte , 2000 .