Characterization of liquid flows in microfluidic systems

[1]  D. Burgreen,et al.  Electrokinetic Flow in Ultrafine Capillary Slits1 , 1964 .

[2]  Norman Epstein,et al.  Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials , 1975 .

[3]  X. Peng,et al.  FRICTIONAL FLOW CHARACTERISTICS OF WATER FLOWING THROUGH RECTANGULAR MICROCHANNELS , 1994 .

[4]  P. Ronney,et al.  Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM) , 1995 .

[5]  G. Peterson,et al.  Convective heat transfer and flow friction for water flow in microchannel structures , 1996 .

[6]  P. Paul,et al.  Imaging of Pressure- and Electrokinetically Driven Flows through Open Capillaries. , 1998, Analytical chemistry.

[7]  D. Beebe,et al.  A particle image velocimetry system for microfluidics , 1998 .

[8]  Chih-Ming Ho,et al.  MICRO-ELECTRO-MECHANICAL-SYSTEMS (MEMS) AND FLUID FLOWS , 1998 .

[9]  Ian Papautsky,et al.  Effects of rectangular microchannel aspect ratio on laminar friction constant , 1999, MOEMS-MEMS.

[10]  S. Wereley,et al.  PIV measurements of a microchannel flow , 1999 .

[11]  Dongqing Li,et al.  Flow characteristics of water in microtubes , 1999 .

[12]  Hayes,et al.  Electroosmotic flow control of fluids on a capillary electrophoresis microdevice using an applied external voltage , 2000, Analytical chemistry.

[13]  S. Wereley,et al.  Volume illumination for two-dimensional particle image velocimetry , 2000 .

[14]  M. Tarlov,et al.  Control of flow direction in microfluidic devices with polyelectrolyte multilayers. , 2000, Analytical chemistry.

[15]  R. Adrian,et al.  Brownian motion and correlation in particle image velocimetry , 2000 .

[16]  T. Kenny,et al.  Electroosmotic capillary flow with nonuniform zeta potential , 2000, Analytical Chemistry.

[17]  Robin H. Liu,et al.  Passive mixing in a three-dimensional serpentine microchannel , 2000, Journal of Microelectromechanical Systems.

[18]  W. Choi,et al.  Experimental investigation of flow friction for liquid flow in microchannels , 2000 .

[19]  G M Whitesides,et al.  Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch. , 2001, Analytical chemistry.

[20]  J. Santiago,et al.  Photobleached-fluorescence imaging of microflows , 2001 .

[21]  T. Johnson,et al.  Imaging of electroosmotic flow in plastic microchannels. , 2001, Analytical chemistry.

[22]  Lung-Ming Fu,et al.  Electroosmotic entry flow in a microchannel , 2001 .

[23]  Liqing Ren,et al.  Interfacial electrokinetic effects on liquid flow in microchannels , 2001 .

[24]  P. Tabeling,et al.  Chaotic mixing in electrokinetically and pressure driven micro flows , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[25]  F. Regnier,et al.  A picoliter-volume mixer for microfluidic analytical systems. , 2001, Analytical chemistry.

[26]  Dongqing Li,et al.  Direct and indirect electroosmotic flow velocity measurements in microchannels. , 2002, Journal of colloid and interface science.

[27]  D. Bornhop,et al.  Quantification and evaluation of Joule heating in on‐chip capillary electrophoresis , 2002, Electrophoresis.

[28]  Y. Zohar,et al.  Pressure loss in constriction microchannels , 2002 .

[29]  T. Shepodd,et al.  High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths. , 2002, Analytical chemistry.

[30]  AN EXPERIMENTAL INVESTIGATION OF GASEOUS FLOW CHARACTERISTICS IN MICROCHANNELS , 2002 .

[31]  A T Conlisk,et al.  Mass transfer and flow in electrically charged micro- and nanochannels. , 2002, Analytical chemistry.

[32]  Juan G. Santiago,et al.  A planar electroosmotic micropump , 2002 .

[33]  Armand Ajdari,et al.  Patterning flows using grooved surfaces. , 2002, Analytical chemistry.

[34]  H. Becker,et al.  Polymer microfluidic devices. , 2002, Talanta.

[35]  Tibor Chován,et al.  Microfabricated devices in biotechnology and biochemical processing. , 2002, Trends in biotechnology.

[36]  K. Takehara,et al.  Particle tracking techniques for electrokinetic microchannel flows. , 2002, Analytical chemistry.

[37]  X. Duan,et al.  Grand canonical Monte Carlo simulation for determination of optimum parameters for adsorption of supercritical methane in pillared layered pores. , 2002, Journal of colloid and interface science.

[38]  B. W. Webb,et al.  Characterization of frictional pressure drop for liquid flows through microchannels , 2002 .

[39]  L. Locascio,et al.  Effect of caged fluorescent dye on the electroosmotic mobility in microchannels. , 2003, Analytical chemistry.

[40]  J. Schlenoff,et al.  Controlling electroosmotic flow in microchannels with pH-responsive polyelectrolyte multilayers , 2003 .

[41]  J. Koo,et al.  Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects , 2003 .

[42]  B. Weigl,et al.  Lab-on-a-chip for drug development. , 2003, Advanced drug delivery reviews.

[43]  Inseob Song,et al.  Fabrication of a microchannel integrated with inner sensors and the analysis of its laminar flow characteristics , 2003 .

[44]  W. Ehrfeld Electrochemistry and microsystems , 2003 .

[45]  R. Zengerle,et al.  Novel approaches to microfluidic components in high-end medical applications , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[46]  G. Whitesides,et al.  Controlling flows in microchannels with patterned surface charge and topography. , 2003, Accounts of chemical research.

[47]  Dongqing Li,et al.  Microfluidic velocimetry with near-wall resolution , 2003 .

[48]  Carsten Werner,et al.  Electrokinetic transport through rough microchannels. , 2003, Analytical chemistry.

[49]  Huiying Wu,et al.  Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios , 2003 .

[50]  C. Grigoropoulos,et al.  Infrared thermal velocimetry for nonintrusive flow measurement in silicon microfluidic devices , 2003 .

[51]  David J. Beebe,et al.  Evaluation of a Three-Dimensional Micromixer in a Surface-Based Biosensor† , 2003 .

[52]  Satish G. Kandlikar,et al.  EFFECT OF ENTRANCE CONDITION ON FRICTIONAL LOSSES AND TRANSITION TO TURBULENCE IN MINICHANNEL FLOWS , 2004 .

[53]  J. Koo,et al.  Viscous dissipation effects in microtubes and microchannels , 2004 .

[54]  Chun Yang,et al.  Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels , 2004 .

[55]  P. Dutta,et al.  Joule heating effects in electroosmotically driven microchannel flows , 2004 .

[56]  B. W. Webb,et al.  The effect of viscous dissipation in thermally fully-developed electro-osmotic heat transfer in microchannels , 2004 .

[57]  Daniel T Chiu,et al.  Parametric investigation on the effect of channel topologies on electrophoretic separations. , 2004, Journal of chromatography. A.

[58]  David Sinton,et al.  Microscale flow visualization , 2004 .

[59]  Albert Mosyak,et al.  Fluid flow in micro-channels , 2005 .

[60]  S. Abdel-Khalik,et al.  An experimental investigation of microchannel flow with internal pressure measurements , 2005 .