Convergence of the forward-backward sweep method in optimal control

The Forward-Backward Sweep Method is a numerical technique for solving optimal control problems. The technique is one of the indirect methods in which the differential equations from the Maximum Principle are numerically solved. After the method is briefly reviewed, two convergence theorems are proved for a basic type of optimal control problem. The first shows that recursively solving the system of differential equations will produce a sequence of iterates converging to the solution of the system. The second theorem shows that a discretized implementation of the continuous system also converges as the iteration and number of subintervals increases. The hypotheses of the theorem are a combination of basic Lipschitz conditions and the length of the interval of integration. An example illustrates the performance of the method.

[1]  G. Fairweather,et al.  Numerical Methods for Two – Point Boundary Value Problems , 2008 .

[2]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[3]  G. Akrivis A First Course In The Numerical Analysis Of Differential Equations [Book News & Reviews] , 1998, IEEE Computational Science and Engineering.

[4]  B. Kokkinis,et al.  Discretization methods for optimal control problems with state constraints , 2006 .

[5]  C. Kaya,et al.  Computations for bang–bang constrained optimal control using a mathematical programming formulation , 2004 .

[6]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[7]  I. Michael Ross,et al.  Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .

[8]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[9]  A. Dontchev Error Estimates for a Discrete Approximation to Constrained Control Problems , 1981 .

[10]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[11]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[12]  Qi Gong,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2006, IEEE Transactions on Automatic Control.

[13]  Andrea Walther,et al.  Automatic differentiation of explicit Runge-Kutta methods for optimal control , 2007, Comput. Optim. Appl..

[14]  W. Hager Rates of Convergence for Discrete Approximations to Unconstrained Control Problems , 1976 .

[15]  Anil V. Rao,et al.  Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method , 2011 .

[16]  Gamal N. Elnagar,et al.  Nonlinear Periodic Optimal Control: A Pseudospectral Fourier Approach , 2005 .

[17]  Sanjoy K. Mitter,et al.  Successive approximation methods for the solution of optimal control problems , 1966, Autom..

[18]  J. M. Martínez,et al.  Local Convergence of an Inexact-Restoration Method and Numerical Experiments , 2005 .

[19]  Lorenz T. Biegler,et al.  Advantages of Nonlinear-Programming-Based Methodologies for Inequality Path-Constrained Optimal Control Problems - A Numerical Study , 2008, SIAM J. Sci. Comput..

[20]  Francesco Biral,et al.  Symbolic-numeric efficient solution of optimal control problems for multibody systems , 2006 .

[21]  F. Chernousko,et al.  Method of successive approximations for solution of optimal control problems , 2007 .

[22]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[23]  Francesca Rossi,et al.  Principles and Practice of Constraint Programming – CP 2003 , 2003, Lecture Notes in Computer Science.

[24]  Wei Kang,et al.  Pseudospectral Optimal Control and Its Convergence Theorems , 2008 .

[25]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[26]  J. Betts,et al.  Direct transcription solution of optimal control problems with higher order state constraints: theory vs practice , 2007 .

[27]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[28]  Wayne H. Enright,et al.  Efficient classes of Runge-Kutta methods for two-point boundary value problems , 2005, Computing.

[29]  H. J. Pesch,et al.  Combining Direct and Indirect Methods in Optimal Control: Range Maximization of a Hang Glider , 1993 .

[30]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[31]  C. Kaya,et al.  Computational Method for Time-Optimal Switching Control , 2003 .

[32]  Wolfgang Hackbusch,et al.  A numerical method for solving parabolic equations with opposite orientations , 1978, Computing.

[33]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[34]  C. Yalçin Kaya,et al.  Inexact Restoration for Runge-Kutta Discretization of Optimal Control Problems , 2010, SIAM J. Numer. Anal..

[35]  J. M. Martínez,et al.  Euler Discretization and Inexact Restoration for Optimal Control , 2007 .

[36]  Gamal N. Elnagar,et al.  Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..

[37]  K. Malanowski,et al.  Error bounds for euler approximation of a state and control constrained optimal control problem , 2000 .

[38]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[39]  Kok Lay Teo,et al.  A Unified Computational Approach to Optimal Control Problems , 1991 .

[40]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[41]  William W. Hager,et al.  Pseudospectral methods for solving infinite-horizon optimal control problems , 2011, Autom..

[42]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[43]  I. Michael Ross,et al.  Pseudospectral methods for optimal motion planning of differentially flat systems , 2004, IEEE Transactions on Automatic Control.

[44]  John T. Workman,et al.  Optimal Control Applied to Biological Models , 2007 .

[45]  William W. Hager,et al.  The Euler approximation in state constrained optimal control , 2001, Math. Comput..

[46]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[47]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[48]  H. Sirisena,et al.  Convergence of the control parameterization Ritz method for nonlinear optimal control problems , 1979 .

[49]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[50]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .