Study on the electronic properties and molecule adsorption of W18O49 nanowires as a catalyst support in the cathodes of direct methanol fuel cells

[1]  M. Pourkashanian,et al.  DFT study of the oxygen reduction reaction on iron, cobalt and manganese macrocycle active sites , 2014 .

[2]  S. Kamarudin,et al.  Novel cathode catalyst for DMFC: Study of the density of states of oxygen adsorption using density functional theory , 2014 .

[3]  Zhenping Zhu,et al.  The inherent kinetic electrochemical reduction of oxygen into H2O on FeN4-carbon: A density functional theory study , 2014 .

[4]  Cheng Wang,et al.  Preparation of highly active and stable polyaniline-cobalt-carbon nanotube electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell , 2014 .

[5]  Siti Kartom Kamarudin,et al.  An overview on non-platinum cathode catalysts for direct methanol fuel cell , 2013 .

[6]  G. Yin,et al.  Tungsten doped Co–Se nanocomposites as an efficient non precious metal catalyst for oxygen reduction , 2013 .

[7]  R. Evarestov,et al.  Four-faceted nanowires generated from densely-packed TiO2 rutile surfaces: Ab initio calculations , 2013 .

[8]  Jianguo Mi,et al.  Adsorption of carbon monoxide on Ag(I)-ZSM-5 zeolite: An ab initio density functional theory study , 2012 .

[9]  R. Evarestov,et al.  Ab initio simulations on rutile-based titania nanowires , 2012 .

[10]  E. Carvajal,et al.  Ab-initio modeling of oxygen on the surface passivation of 3CSiC nanostructures , 2012 .

[11]  W. Orellana Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study , 2012 .

[12]  R. Evarestov,et al.  Symmetry and Stability of the Rutile-Based TiO2 Nanowires: Models and Comparative LCAO-Plane Wave DFT Calculations , 2012 .

[13]  A. Sebetci Interaction of carbon monoxide with bimetallic Co-Pt clusters: A density functional theory study , 2012 .

[14]  J. Vazquez-Arenas,et al.  Mechanistic analysis of highly active nitrogen-doped carbon nanotubes for the oxygen reduction reaction , 2012 .

[15]  J. Wilcox,et al.  Mechanisms of the Oxygen Reduction Reaction on Defective Graphene-Supported Pt Nanoparticles from First-Principles , 2012 .

[16]  Hee-Seung Lee,et al.  First principles studies of the electronic properties and catalytic activity of single-walled carbon nanotube doped with Pt clusters and chains , 2012 .

[17]  B. Hou,et al.  Catalytic activity of graphene-cobalt hydroxide composite for oxygen reduction reaction in alkaline media , 2012 .

[18]  Jennifer Wilcox,et al.  DFT-Based Study on Oxygen Adsorption on Defective Graphene-Supported Pt Nanoparticles , 2011 .

[19]  Yuxiang Qin,et al.  Solvothermally synthesized tungsten oxide nanowires/nanorods for NO2 gas sensor applications , 2011 .

[20]  C. Chung,et al.  Pt and Pd decorated Au nanowires: Extremely high activity of ethanol oxidation in alkaline media , 2011 .

[21]  Zhenjiang Li,et al.  Synthesis of transition metal-doped tungsten oxide nanostructures and their optical properties , 2011 .

[22]  C. Zhong,et al.  Spontaneous reduction of O2 on PtVFe nanocatalysts , 2011 .

[23]  Donghai Mei,et al.  Reactivity of Hydrogen and Methanol on (001) Surfaces of WO3, ReO3, WO3/ReO3 and ReO3/WO3 , 2011 .

[24]  Stanislaus S. Wong,et al.  Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. , 2010, Chemical communications.

[25]  V. Borisenko,et al.  Tungsten oxides. II. The metallic nature of Magnéli phases , 2010 .

[26]  Darren A. Walsh,et al.  Palladium–vanadium alloy electrocatalysts for oxygen reduction: Effect of heat treatment on electrocatalytic activity and stability , 2010 .

[27]  Siti Kartom Kamarudin,et al.  High power passive μDMFC with low catalyst loading for small power generation , 2010 .

[28]  Hiroyuki Tominaga,et al.  Ammonia-treated carbon-supported cobalt tungsten as fuel cell cathode catalyst , 2010 .

[29]  P. Srivastava,et al.  Structural stability and electronic properties of GaSb nanowires , 2009 .

[30]  P. Kulesza,et al.  Multi-walled carbon nanotube-supported tungsten oxide-containing multifunctional hybrid electrocatalytic system for oxygen reduction in acid medium , 2009 .

[31]  R. Li,et al.  Tungsten oxide nanowires grown on carbon paper as Pt electrocatalyst support for high performance proton exchange membrane fuel cells , 2009 .

[32]  B. Agrawal,et al.  Ab initio study of [001] GaN nanowires , 2009 .

[33]  G. Min,et al.  Synthesis of bundled tungsten oxide nanowires with controllable morphology , 2009 .

[34]  Taihong Wang,et al.  Ab Initio Study Of Zno-Based Gas-Sensing Mechanisms: Surface Reconstruction And Charge Transfer , 2009 .

[35]  Matteo Ferroni,et al.  Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors , 2009 .

[36]  C. Turner,et al.  CO oxidation with Pt(1 1 1) supported on pure and boron-doped carbon: A DFT investigation , 2008 .

[37]  T. Frauenheim,et al.  Energetic and electronic properties of hydrogen passivated ZnO nanowires , 2008 .

[38]  Rongrong Chen,et al.  Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine , 2008 .

[39]  M. Saha,et al.  Nanotubes, Nanofibers and Nanowires as Supports for Catalysts , 2008 .

[40]  Lei Zhang,et al.  Ternary non-noble metal chalcogenide (W-Co-Se) as electrocatalyst for oxygen reduction reaction , 2007 .

[41]  K. Jeng,et al.  Fabrication and impedance studies of DMFC anode incorporated with CNT-supported high-metal-content electrocatalyst , 2007 .

[42]  D. H. Chi,et al.  Electronic structures of Pt clusters adsorbed on (5, 5) single wall carbon nanotube , 2006 .

[43]  Jinlong Yang,et al.  Piezoelectricity in ZnO nanowires: A first-principles study , 2006 .

[44]  Hu-lin Li,et al.  Vanadium oxide nanotubes as the support of Pd catalysts for methanol oxidation in alkaline solution , 2006 .

[45]  N. Castellani,et al.  DFT studies of the adsorption and interaction of two methanol molecules on a MgO edge , 2006 .

[46]  P. Balbuena,et al.  Adsorption and dissociation of H2O2 on Pt and Pt-alloy clusters and surfaces. , 2006, The journal of physical chemistry. B.

[47]  J. Prakash,et al.  Investigations of carbon-supported CoPd3 catalysts as oxygen cathodes in PEM fuel cells , 2006 .

[48]  Jinlong Yang,et al.  Piezoelectricity in ZnO nanowires: A first-principles study , 2005, cond-mat/0511473.

[49]  Xike Tian,et al.  Fabrication and structural characterization of porous tungsten oxide nanowires , 2005 .

[50]  Siti Kartom Kamarudin,et al.  Design of a fuel processor unit for PEM fuel cell via shortcut design method , 2004 .

[51]  Zidong Wei,et al.  Study of Pt/C and Pt–Fe/C catalysts for oxygen reduction in the light of quantum chemistry , 2003 .

[52]  C. N. R. Rao,et al.  Nanotubes and nanowires , 2001 .

[53]  Yann Bultel,et al.  Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion , 2001 .

[54]  Y. Ishikawa,et al.  Oxidation of methanol on platinum, ruthenium and mixed Pt–M metals (M=Ru, Sn): a theoretical study , 2000 .

[55]  A. Campero,et al.  Synthesis of W-Se-Os carbonyl electrocatalyst for oxygen reduction in 0.5 M H2SO4 , 1998 .