Specific Texture Analysis for Iris Recognition

In this paper, we present a new method for iris recognition based on specific texture analysis. It relies on the use of Haar wavelet analysis to extract the texture of the iris tissue. The matching is done using a specific correlation based on local peaks detection. Experiments have been conducted on the CASIA database in verification mode and show an EER of 0.07%. Degraded version of the CASIA database results in an EER of 2.3%, which is lower than result obtained by the classical wavelet demodulation (WD) method in that database.

[1]  Siwei Luo,et al.  An efficient iris recognition system , 2002, Proceedings. International Conference on Machine Learning and Cybernetics.

[2]  A. Jensen,et al.  Ripples in Mathematics - The Discrete Wavelet Transform , 2001 .

[3]  John Daugman How iris recognition works , 2004 .

[4]  Richard P. Wildes,et al.  Iris recognition: an emerging biometric technology , 1997, Proc. IEEE.

[5]  Li Yu,et al.  Iris Recognition Based on Location of Key Points , 2004, ICBA.

[6]  Boualem Boashash,et al.  A human identification technique using images of the iris and wavelet transform , 1998, IEEE Trans. Signal Process..

[7]  Bernadette Dorizzi,et al.  Iris identification using wavelet packets , 2004, ICPR 2004.

[8]  Alfred C. Weaver,et al.  Biometric authentication , 2006, Computer.

[9]  Tieniu Tan,et al.  An Iris Recognition Algorithm Using Local Extreme Points , 2004, ICBA.

[10]  B. V. K. Vijaya Kumar,et al.  Iris Verification Using Correlation Filters , 2003, AVBPA.

[11]  Tieniu Tan,et al.  Iris recognition using circular symmetric filters , 2002, Object recognition supported by user interaction for service robots.

[12]  T. Tan,et al.  Robust direction estimation of gradient vector field for iris recognition , 2004, ICPR 2004.