Shear Horizontal Surface Acoustic Waves on Solids

The existence of shear horizontal surface acoustic waves (which play a fundamental role in many areas of mechanical engineering, surface physics, acoustoelectronics, seismology, and material science) is viewed as the result of a perturbation in boundary conditions -the latter being understood in the large- in order to bind otherwise essentially skimming bulk SH waves to the limiting surface. Various means to produce this perturbation are considered in this spirit. They include spatial inhomogeneities, additional interfaces, curvature, gratings, roughness, spatial dispersion, and couplings with electric and magnetic fields for different types of materials.

[1]  G. Maugin,et al.  Magnetoacoustic wave propagation in paramagnetic insulators exhibiting induced linear magnetoelastic couplings , 1984 .

[2]  A. Maradudin,et al.  A Laguerre series approach to the calculation of wave properties for surfaces of inhomogeneous elastic materials , 1987 .

[3]  A. Maradudin,et al.  Frequency shift and attenuation length of a Rayleigh wave due to surface roughness , 1983 .

[4]  B. A. Auld,et al.  Horizontal shear surface waves on corrugated surfaces , 1976 .

[5]  F. Lund,et al.  Nonlinear waves in elastic media , 1982 .

[6]  N. Kalyansaundaram Finite-amplitude love-waves on an isotropic layered half-space , 1981 .

[7]  G. Alldredge Shear-horizontal surface waves on the (001) face of cubic crystals , 1972 .

[8]  D. Mills,et al.  Propagation of surface magnetoelastic waves on ferromagnetic crystal substrates , 1977 .

[9]  R. Camley,et al.  Surface magnetoelastic waves in the presence of exchange interactions and pinning of surface spins , 1978 .

[10]  R. Damon,et al.  Magnetostatic modes of a ferromagnet slab , 1961 .

[11]  N. Kalyanasundaram Non-linear propagation characteristics of Bleustein-Gulyaev waves , 1984 .

[12]  A. Murdoch The propagation of surface waves in bodies with material boundaries , 1976 .

[13]  G. Maugin,et al.  Waves in elastic semiconductors in a bias electric field , 1986 .

[14]  Witold Kosiński Field singularities and wave analysis in continuum mechanics , 1986 .

[15]  T. R. Meeker,et al.  Intrinsic stress in thin films deposited on anisotropic substrates and its influence on the natural frequencies of piezoelectric resonators , 1981 .

[16]  D. Royer,et al.  Rayleigh wave velocity and displacement in orthorhombic, tetragonal, hexagonal, and cubic crystals , 1984 .

[17]  G. I. Stegeman,et al.  Surface Acoustic Waves , 1985 .

[18]  P. Kiełczyński,et al.  Determination of the depth of a non-homogeneous surface layer in elastic materials using shear surface acoustic waves , 1985 .

[19]  P. Tournois,et al.  BLEUSTEIN‐GULYAEV SURFACE WAVE AMPLIFICATION IN CdS , 1971 .

[20]  P. Fulde,et al.  Theory of Rayleigh waves on paramagnetic rare-earth systems , 1981 .

[21]  H. F. Tiersten,et al.  Elastic Surface Waves Guided by Thin Films , 1969 .

[22]  G. Maugin,et al.  Bleustein–Gulayev surface modes in elastic ferroelectrics , 1981 .

[23]  A. Maradudin,et al.  Pure shear elastic surface wave guided by the interface between two semi‐infinite magnetoelastic media , 1981 .

[24]  Jeffrey L. Bleustein,et al.  A NEW SURFACE WAVE IN PIEZOELECTRIC MATERIALS , 1968 .

[25]  G. Maugin,et al.  The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces , 1986 .

[26]  W. Bron,et al.  Nonequilibrium Phonon Dynamics , 1985 .

[27]  J. Achenbach Wave propagation in elastic solids , 1962 .