A Null Space Free Jacobi-Davidson Iteration for Maxwell's Operator

We present an efficient null space free Jacobi--Davidson method to compute the positive eigenvalues of time harmonic Maxwell's equations. We focus on a class of spatial discretizations that guarantee the existence of discrete vector potentials, such as Yee's scheme and the edge elements. During the Jacobi--Davidson iteration, the correction process is applied to the vector potential instead. The correction equation is solved approximately as in the standard Jacobi--Davidson approach. The computational cost of the transformation from the vector potential to the corrector is negligible. As a consequence, the expanding subspace automatically stays out of the null space and no extra projection step is needed. Numerical evidence confirms that the proposed scheme indeed outperforms the standard and projection-based Jacobi--Davidson methods by a significant margin.

[1]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[2]  Valeria Simoncini,et al.  Algebraic formulations for the solution of the nullspace‐free eigenvalue problem using the inexact Shift‐and‐Invert Lanczos method , 2003, Numer. Linear Algebra Appl..

[3]  Peter Arbenz,et al.  A comparison of solvers for large eigenvalue problems occuring in the design of resonant cavities , 1999 .

[4]  Weichung Wang,et al.  Numerical simulation of three dimensional pyramid quantum dot , 2004 .

[5]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[6]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[7]  Peter Arbenz A Comparison of Factorization-Free Eigensolvers with Application to Cavity Resonators , 2002, International Conference on Computational Science.

[8]  Chien-Cheng Chang,et al.  Numerical Study of Three-Dimensional Photonic Crystals with Large Band Gaps , 2004 .

[9]  H. Flanders Differential Forms with Applications to the Physical Sciences , 1964 .

[10]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[11]  P. Arbenz,et al.  Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems , 2005 .

[12]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[13]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[14]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[15]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[16]  Yvan Notay,et al.  Combination of Jacobi–Davidson and conjugate gradients for the partial symmetric eigenproblem , 2002, Numer. Linear Algebra Appl..

[17]  H. Whitney Geometric Integration Theory , 1957 .

[18]  Weichung Wang,et al.  Numerical methods for semiconductor heterostructures with band nonparabolicity , 2003 .

[19]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[20]  W. Rudin Principles of mathematical analysis , 1964 .

[21]  Wei-Cheng Wang A Jump Condition Capturing Finite Difference Scheme for Elliptic Interface Problems , 2004, SIAM J. Sci. Comput..

[22]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[23]  Wei-Cheng Wang,et al.  Adaptive Computation of the Corner Singularity with the Monotone Jump Condition Capturing Scheme , 2005 .

[24]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..

[25]  Wen-Wei Lin,et al.  Jacobi–Davidson methods for cubic eigenvalue problems , 2005, Numer. Linear Algebra Appl..

[26]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[27]  Ralf Hiptmair,et al.  Multilevel Method for Mixed Eigenproblems , 2002, SIAM J. Sci. Comput..

[28]  M. Shashkov,et al.  Mimetic Discretizations forMaxwell ' s Equations and theEquations of Magnetic Di usion , 2007 .

[29]  Weichung Wang,et al.  Numerical schemes for three-dimensional irregular shape quantum dots over curvilinear coordinate systems , 2007, J. Comput. Phys..

[30]  Roy A. Nicolaides,et al.  Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions , 1998, Math. Comput..

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Mihail M. Sigalas,et al.  Three-Dimensional Photonic Band Gaps in Modified Simple Cubic Lattices , 2002 .

[33]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[34]  C. Kittel Introduction to solid state physics , 1954 .