Time and Spectral Domain Relative Entropy: A New Approach to Multivariate Spectral Estimation

The concept of spectral relative entropy rate is introduced for jointly stationary Gaussian processes. Using classical information-theoretic results, we establish a remarkable connection between time and spectral domain relative entropy rates. This naturally leads to a new spectral estimation technique where a multivariate version of the Itakura-Saito distance is employed. It may be viewed as an extension of the approach, called THREE, introduced by Byrnes, Georgiou, and Lindquist in 2000 which, in turn, followed in the footsteps of the Burg-Jaynes Maximum Entropy Method. Spectral estimation is here recast in the form of a constrained spectrum approximation problem where the distance is equal to the processes relative entropy rate. The corresponding solution entails a complexity upper bound which improves on the one so far available in the multichannel framework. Indeed, it is equal to the one featured by THREE in the scalar case. The solution is computed via a globally convergent matricial Newton-type algorithm. Simulations suggest the effectiveness of the new technique in tackling multivariate spectral estimation tasks, especially in the case of short data records.

[1]  Tryphon T. Georgiou,et al.  Realization of power spectra from partial covariance sequences , 1987, IEEE Trans. Acoust. Speech Signal Process..

[2]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[3]  D. Stoffer,et al.  Automatic estimation of multivariate spectra via smoothing splines , 2007 .

[4]  Tryphon T. Georgiou,et al.  A Convex Optimization Approach to ARMA Modeling , 2008, IEEE Transactions on Automatic Control.

[5]  C. Byrnes,et al.  Generalized interpolation in $H^\infty$ with a complexity constraint , 2004 .

[6]  Tryphon T. Georgiou,et al.  Distances and Riemannian Metrics for Multivariate Spectral Densities , 2011, IEEE Transactions on Automatic Control.

[7]  Anders Lindquist,et al.  Identifiability and Well-Posedness of Shaping-Filter Parameterizations: A Global Analysis Approach , 2002, SIAM J. Control. Optim..

[8]  R. Gray,et al.  Distortion measures for speech processing , 1980 .

[9]  Tryphon T. Georgiou,et al.  Solution of the general moment problem via a one-parameter imbedding , 2005, IEEE Transactions on Automatic Control.

[10]  Johan Karlsson,et al.  Minimal Itakura-Saito distance and covariance interpolation , 2008, 2008 47th IEEE Conference on Decision and Control.

[11]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[12]  M. Basseville Distance measures for signal processing and pattern recognition , 1989 .

[13]  C. Byrnes,et al.  On the partial stochastic realization problem , 1997, IEEE Trans. Autom. Control..

[14]  Tryphon T. Georgiou,et al.  Spectral analysis based on the state covariance: the maximum entropy spectrum and linear fractional parametrization , 2002, IEEE Trans. Autom. Control..

[15]  Tryphon T. Georgiou,et al.  Remarks on control design with degree constraint , 2006, IEEE Transactions on Automatic Control.

[16]  Tryphon T. Georgiou Relative entropy and the multivariable multidimensional moment problem , 2006, IEEE Transactions on Information Theory.

[17]  Andrei N. Kolmogorov,et al.  On the Shannon theory of information transmission in the case of continuous signals , 1956, IRE Trans. Inf. Theory.

[18]  Shunsuke Ihara,et al.  Information theory - for continuous systems , 1993 .

[19]  Tryphon T. Georgiou,et al.  Kullback-Leibler approximation of spectral density functions , 2003, IEEE Trans. Inf. Theory.

[20]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[21]  Julius S. Bendat,et al.  Stationary Random Processes , 2012 .

[22]  C. Byrnes,et al.  A Convex Optimization Approach to the Rational Covariance Extension Problem , 1999 .

[23]  Tryphon T. Georgiou,et al.  The interpolation problem with a degree constraint , 1999, IEEE Trans. Autom. Control..

[24]  J.H. McClellan,et al.  Multidimensional spectral estimation , 1982, Proceedings of the IEEE.

[25]  Anders Lindquist,et al.  Matrix-valued Nevanlinna-Pick interpolation with complexity constraint: an optimization approach , 2003, IEEE Trans. Autom. Control..

[26]  J. H. van Schuppen,et al.  System identification with information theoretic criteria , 1995 .

[27]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[28]  Michele Pavon,et al.  A Maximum Entropy Enhancement for a Family of High-Resolution Spectral Estimators , 2012, IEEE Transactions on Automatic Control.

[29]  S. Berman Stationary and Related Stochastic Processes , 1967 .

[30]  Amiel Feinstein,et al.  Information and information stability of random variables and processes , 1964 .

[31]  C. Byrnes,et al.  A complete parameterization of all positive rational extensions of a covariance sequence , 1995, IEEE Trans. Autom. Control..

[32]  Michele Pavon,et al.  Hellinger Versus Kullback–Leibler Multivariable Spectrum Approximation , 2007, IEEE Transactions on Automatic Control.

[33]  Tryphon T. Georgiou,et al.  Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques , 2005, IEEE Transactions on Biomedical Engineering.

[34]  Tryphon T. Georgiou,et al.  The structure of state covariances and its relation to the power spectrum of the input , 2002, IEEE Trans. Autom. Control..

[35]  Adriaan van den Bos,et al.  The multivariate complex normal distribution-a generalization , 1995, IEEE Trans. Inf. Theory.

[36]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[37]  N. S. Barnett,et al.  Private communication , 1969 .

[38]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[39]  Michele Pavon,et al.  A Globally Convergent Matricial Algorithm for Multivariate Spectral Estimation , 2008, IEEE Transactions on Automatic Control.

[40]  Tryphon T. Georgiou,et al.  A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..

[41]  A. Dembo,et al.  Large Deviation Techniques and Applications. , 1994 .

[42]  Anders Lindquist,et al.  Important Moments in Systems and Control , 2008, SIAM J. Control. Optim..

[43]  Tryphon T. Georgiou,et al.  Spectral estimation via selective harmonic amplification , 2001, IEEE Trans. Autom. Control..

[44]  Tryphon T. Georgiou,et al.  Distances and Riemannian Metrics for Spectral Density Functions , 2007, IEEE Transactions on Signal Processing.

[45]  harald Cramer,et al.  Stationary And Related Stochastic Processes , 1967 .

[46]  L. Goddard Information Theory , 1962, Nature.

[47]  T. Georgiou Distances between power spectral densities , 2006, math/0607026.

[48]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[49]  Giorgio Picci,et al.  Identification, adaptation, learning : the science of learning models from data , 1996 .