Outer approximation algorithms for canonical DC problems

The paper discusses a general framework for outer approximation type algorithms for the canonical DC optimization problem. The algorithms rely on a polar reformulation of the problem and exploit an approximated oracle in order to check global optimality. Consequently, approximate optimality conditions are introduced and bounds on the quality of the approximate global optimal solution are obtained. A thorough analysis of properties which guarantee convergence is carried out; two families of conditions are introduced which lead to design six implementable algorithms, whose convergence can be proved within a unified framework.

[1]  Hoang Tuy Normal conical algorithm for concave minimization over polytopes , 1991, Math. Program..

[2]  Hoang Tuy,et al.  Effect of the subdivision strategy on convergence and efficiency of some global optimization algorithms , 1991, J. Glob. Optim..

[3]  Hoang Tuy,et al.  D.C. Optimization: Theory, Methods and Algorithms , 1995 .

[4]  Reiner Horst,et al.  The Geometric Complementarity Problem and Transcending Stationarity in Global Optimization , 1990, Applied Geometry And Discrete Mathematics.

[5]  Hoang Tuy,et al.  On Global Optimality Conditions and Cutting Plane Algorithms , 2003 .

[6]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[7]  Ider Tseveendorj,et al.  Testing the ℜ- strategy for a Reverse Convex Problem , 1998, J. Glob. Optim..

[8]  Sihem BenSaad A new cutting plane-algorithm for a class of reverse convex 0–1 integer programs , 1992 .

[9]  Michael K. Ng,et al.  Efficient Total Variation Minimization Methods for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[10]  János Fülöp A finite cutting plane method for solving linear programs with an additional reverse convex constraint , 1990 .

[11]  H. Tuy A General Deterministic Approach to Global Optimization VIA D.C. Programming , 1986 .

[12]  Reiner Horst,et al.  Convergence and restart in branch-and-bound algorithms for global optimization. Application to concave minimization and D.C. Optimization problems , 1988, Math. Program..

[13]  H. Tuy Global Minimization of a Difference of Two Convex Functions , 1987 .

[14]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[15]  S. Bensaad,et al.  Comments on a reverse convex programming algorithm , 1994, J. Glob. Optim..

[16]  J. Pintér Global optimization : scientific and engineering case studies , 2006 .

[17]  Nikolaos V. Sahinidis,et al.  Global Optimization of Multiplicative Programs , 2003, J. Glob. Optim..

[18]  Faiz A. Al-Khayyal,et al.  Global optimization of a nonconvex single facility location problem by sequential unconstrained convex minimization , 1992, J. Glob. Optim..

[19]  Hoai An Le Thi,et al.  A continuous approch for globally solving linearly constrained quadratic , 2001 .

[20]  Anatoliy D. Rikun,et al.  A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..

[21]  J. Penot What is quasiconvex analysis? , 2000 .

[22]  N. Thoai,et al.  A modified version of TUY’s method for solving d.c. programming problems , 1988 .

[23]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[24]  Stephen E. Jacobsen,et al.  A level set algorithm for a class of reverse convex programs , 1990 .

[25]  P. Hartman On functions representable as a difference of convex functions , 1959 .

[26]  Phan Thien Thach D.c. sets, d.c. functions and nonlinear equations , 1993, Math. Program..

[27]  Le Thi Hoai An,et al.  A method for solving d.c. programming problems. Application to fuel mixture nonconvex optimization problem , 1995, J. Glob. Optim..

[28]  Hoang Tuy,et al.  On nonconvex optimization problems with separated nonconvex variables , 1992, J. Glob. Optim..

[29]  S. Sathiya Keerthi,et al.  Optimization Techniques for Semi-Supervised Support Vector Machines , 2008, J. Mach. Learn. Res..

[30]  H. Tuy Convex analysis and global optimization , 1998 .

[31]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[32]  Hanif D. Sherali,et al.  On Finitely Terminating Branch-and-Bound Algorithms for Some Global Optimization Problems , 1999, SIAM J. Optim..

[33]  Luigi Grippo,et al.  On the convergence of the block nonlinear Gauss-Seidel method under convex constraints , 2000, Oper. Res. Lett..

[34]  J. Hiriart-Urruty,et al.  FERMAT Days 85 : mathematics for optimization , 1986 .

[35]  H. Tuy Convex programs with an additional reverse convex constraint , 1987 .

[36]  Peter Värbrand,et al.  A quasiconcave minimization method for solving linear two-level programs , 1994, J. Glob. Optim..

[37]  Reiner Horst,et al.  On solving general reverse convex programming problems by a sequence of linear programs and line searches , 1990 .

[38]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[39]  J. Hiriart-Urruty Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions , 1985 .

[40]  Hoang Tuy,et al.  Canonical DC programming problem: Outer approximation methods revisited , 1995, Oper. Res. Lett..

[41]  H. D. Tuan Remarks on an algorithm for reverse convex programs , 2000, J. Glob. Optim..

[42]  Qinghua Zhang,et al.  Outer approximation algorithms for DC programs and beyond , 2010, 4OR.

[43]  C. Sutti On the generalized differentiability ( , 1995 .

[44]  Panos M. Pardalos,et al.  Recent Advances in Global Optimization , 1991 .

[45]  Marlies Borchardt,et al.  A counterexample to a global optimization algorithm , 1994, J. Glob. Optim..