Potassium Formate-Based Electrolytes for High Performance Aqueous Electrochemical Capacitors

[1]  F. Béguin,et al.  Effect of salt concentration in aqueous LiTFSI electrolytes on the performance of carbon-based electrochemical capacitors , 2021 .

[2]  T. Wen,et al.  Thermal properties study and performance investigation of potassium formate solution in a falling film dehumidifier/regenerator , 2019, International Journal of Heat and Mass Transfer.

[3]  R. Kühnel,et al.  Suppressing Crystallization of Water-in-Salt Electrolytes by Asymmetric Anions Enables Low-Temperature Operation of High-Voltage Aqueous Batteries , 2019, ACS Materials Letters.

[4]  A. Balducci,et al.  Glyoxal-Based Solvents for Electrochemical Energy-Storage Devices. , 2018, ChemSusChem.

[5]  P. Taberna,et al.  Materials for supercapacitors: When Li-ion battery power is not enough , 2018 .

[6]  A. Bund,et al.  The influence of current collector corrosion on the performance of electrochemical capacitors , 2017 .

[7]  Jinping Liu,et al.  Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects , 2017, Advanced science.

[8]  A. Balducci,et al.  Characterization of different conductive salts in ACN‐based electrolytes for electrochemical double layer capacitors , 2016 .

[9]  Selena M. Russell,et al.  Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte. , 2016, Angewandte Chemie.

[10]  Bruce Dunn,et al.  Efficient storage mechanisms for building better supercapacitors , 2016, Nature Energy.

[11]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[12]  A. B. Fuertes,et al.  Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. , 2014, ACS nano.

[13]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[14]  A. Balducci,et al.  Theoretical and practical energy limitations of organic and ionic liquid-based electrolytes for high voltage electrochemical double layer capacitors , 2014 .

[15]  A. Balducci,et al.  The influence of pore size and surface area of activated carbons on the performance of ionic liquid based supercapacitors. , 2013, Physical chemistry chemical physics : PCCP.

[16]  A. Balducci,et al.  Ionic liquids in supercapacitors , 2013 .

[17]  R. Kötz,et al.  Cycle versus voltage hold – Which is the better stability test for electrochemical double layer capacitors? , 2013 .

[18]  Zonghai Chen,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[19]  Andreas Sumper,et al.  A review of energy storage technologies for wind power applications , 2012 .

[20]  Andrea Balducci,et al.  Adiponitrile-based electrochemical double layer capacitor , 2012 .

[21]  Alexander Wokaun,et al.  A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages , 2010 .

[22]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[23]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[24]  M. Armand,et al.  Building better batteries , 2008, Nature.

[25]  Kevin Leung,et al.  Ab initio molecular dynamics study of formate ion hydration. , 2004, Journal of the American Chemical Society.

[26]  David G. Dorrell,et al.  A review of supercapacitor modeling, estimation, and applications: A control/management perspective , 2018 .

[27]  A. Balducci,et al.  The Influence of Conductive Salt Ion Selection on EDLC Electrolyte Characteristics and Carbon-Electrolyte Interaction , 2015 .