A high-performance parallel implementation of the certified reduced basis method

Abstract The certified reduced basis method (herein RB method) is a popular approach for model reduction of parametrized partial differential equations. In this paper we introduce new techniques that are required to efficiently implement the Offline “Construction stage” of the RB method on high-performance parallel supercomputers. This enables us to generate certified RB models for large-scale three-dimensional problems that can be evaluated on standard workstations and other “thin” computing resources with speedup of many orders of magnitude compared to the corresponding full order model. We use our implementation to perform detailed numerical studies for two computationally expensive model problems: a natural convection fluid flow problem and a “many parameter” heat transfer problem. In the heat transfer problem, we exploit the computational efficiency of the RB method to perform a detailed study of “snapshot” selection in the Greedy algorithm, and we also examine statistics of the output sensitivity derivatives to obtain a “global” view of the relative importance of the parameters.

[1]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[2]  G. W. Stewart,et al.  Afternotes on numerical analysis , 1987 .

[3]  Werner C. Rheinboldt,et al.  On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations , 1983 .

[4]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[5]  J. Peraire,et al.  An efficient reduced‐order modeling approach for non‐linear parametrized partial differential equations , 2008 .

[6]  S. Sen Reduced-Basis Approximation and A Posteriori Error Estimation for Many-Parameter Heat Conduction Problems , 2008 .

[7]  G. Rozza,et al.  Parametric free-form shape design with PDE models and reduced basis method , 2010 .

[8]  Anthony T. Patera,et al.  A Posteriori Error Bounds for the Empirical Interpolation Method , 2010 .

[9]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[10]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[11]  A. Patera,et al.  Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds , 2003 .

[12]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[13]  N. Nguyen,et al.  REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATION FOR THE PARAMETRIZED UNSTEADY BOUSSINESQ EQUATIONS , 2011 .

[14]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[15]  T. A. Porsching,et al.  The reduced basis method for initial value problems , 1987 .

[16]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[17]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[18]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[19]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[20]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[21]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[22]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[23]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[24]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[25]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[26]  Sung-Mo Kang,et al.  Model-order reduction of nonlinear MEMS devices through arclength-based Karhunen-Loeve decomposition , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[27]  Bernard Haasdonk,et al.  A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space , 2011 .

[28]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[29]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[30]  Charbel Farhat,et al.  On-Demand CFD-Based Aeroelastic Predictions Using a Database of Reduced-Order Bases and Models , 2009 .

[31]  P. Stern,et al.  Automatic choice of global shape functions in structural analysis , 1978 .

[32]  Anthony T. Patera,et al.  High-Fidelity Real-Time Simulation on Deployed Platforms , 2011 .

[33]  Marcus Meyer,et al.  Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods , 2003 .

[34]  Gui-Rong Liu,et al.  A novel reduced-basis method with upper and lower bounds for real-time computation of linear elasticity problems , 2008 .

[35]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[36]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[37]  Anthony T. Patera,et al.  RESEARCH ARTICLE An hp Certied Reduced Basis Method for Parametrized Parabolic Partial Dierential Equations , 2010 .

[38]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[39]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[40]  M. Gunzburger,et al.  Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data , 2007 .

[41]  Bernard Haasdonk,et al.  Reduced Basis Method for Finite Volume Approximations of Parametrized Evolution Equations , 2006 .

[42]  Anthony T. Patera,et al.  An "hp" Certified Reduced Basis Method for Parametrized Elliptic Partial Differential Equations , 2010, SIAM J. Sci. Comput..

[43]  Thomas Bewley,et al.  Flow control: new challenges for a new Renaissance , 2001 .

[44]  William Gropp,et al.  Modern Software Tools in Scientific Computing , 1994 .

[45]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[46]  Murat Kunt,et al.  ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE , 2000 .

[47]  Anthony T. Patera,et al.  A Certified Reduced Basis Method for the Fokker--Planck Equation of Dilute Polymeric Fluids: FENE Dumbbells in Extensional Flow , 2010, SIAM J. Sci. Comput..

[48]  A. Noor Recent advances in reduction methods for nonlinear problems. [in structural mechanics , 1981 .

[49]  Sophia Lefantzi,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .