Widely linear denoising of multicomponent seismic data

ABSTRACT Seismic data processing is a challenging task, especially when dealing with vector‐valued datasets. These data are characterized by correlated components, where different levels of uncorrelated random noise corrupt each one of the components. Mitigating such noise while preserving the signal of interest is a primary goal in the seismic‐processing workflow. The frequency‐space deconvolution is a well‐known linear prediction technique, which is commonly used for random noise suppression. This paper represents vector‐field seismic data through quaternion arrays and shows how to mitigate random noise by proposing the extension of the frequency‐space deconvolution to its hypercomplex version, the quaternion frequency‐space deconvolution. It also shows how a widely linear prediction model exploits the correlation between data components of improper signals. The widely linear scheme, named widely‐linear quaternion frequency‐space deconvolution, produces longer prediction filters, which have enhanced signal preservation capabilities shown through synthetic and field vector‐valued data examples.

[1]  Angelo Sajeva,et al.  Characterisation and extraction of a Rayleigh-wave mode in vertically heterogeneous media using quaternion SVD , 2017, Signal Process..

[2]  Necati Gulunay,et al.  Signal leakage in f-x deconvolution algorithms , 2017 .

[3]  Milton J. Porsani,et al.  Seismic trace interpolation using half-step prediction filters , 1999 .

[4]  Pascal Chevalier,et al.  Widely linear estimation with complex data , 1995, IEEE Trans. Signal Process..

[5]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2007, IEEE Trans. Image Process..

[6]  Mauricio D. Sacchi,et al.  Multicomponent f-x seismic random noise attenuation via vector autoregressive operators , 2012 .

[7]  Mauricio D. Sacchi,et al.  Vector reconstruction of multicomponent seismic data , 2013 .

[8]  Danilo P. Mandic,et al.  The Quaternion LMS Algorithm for Adaptive Filtering of Hypercomplex Processes , 2009, IEEE Transactions on Signal Processing.

[9]  Bernard C. Picinbono,et al.  Second-order complex random vectors and normal distributions , 1996, IEEE Trans. Signal Process..

[10]  Jeffrey Shragge,et al.  Quaternion-based Signal Processing , 2006 .

[11]  Sven Treitel,et al.  The complex Wiener filter , 1974 .

[12]  Danilo P. Mandic,et al.  Augmented second-order statistics of quaternion random signals , 2011, Signal Process..

[13]  S. Spitz Seismic trace interpolation in the F-X domain , 1991 .

[14]  L. Canales Random Noise Reduction , 1984 .

[15]  Nicolas Le Bihan,et al.  Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing , 2004, Signal Process..

[16]  Stephen J. Sangwine,et al.  Quaternion Fourier Transforms for Signal and Image Processing , 2014 .

[17]  Alfredo Mazzotti,et al.  Deconvolution of multicomponent seismic data by means of quaternions: Theory and preliminary results ‡ , 2012 .

[18]  Mauricio D. Sacchi,et al.  Quaternionic rank-reduction methods for vector-field seismic data processing , 2019, Digit. Signal Process..

[19]  Necati Gulunay,et al.  FXDECON and complex wiener prediction filter , 1986 .

[20]  Danilo Comminiello,et al.  Frequency domain quaternion adaptive filters: Algorithms and convergence performance , 2017, Signal Process..

[21]  Fuqiang Zeng,et al.  Quaternion-based anisotropic inversion for flexural waves in horizontal transverse isotropic formations with unmatched sources: A synthetic example , 2018, GEOPHYSICS.

[22]  Andrew T. Walden,et al.  Quaternion VAR Modelling and Estimation , 2013, IEEE Transactions on Signal Processing.

[23]  Massimiliano Vassallo,et al.  Noise Attenuation in Multimeasurement Streamer Data using Weighted Vector Auto Regressive Operators , 2015 .

[24]  Alfredo Mazzotti,et al.  Multicomponent velocity analysis with quaternions , 2007 .

[25]  Michael K. Chase,et al.  Random noise reduction by 3‐D spatial prediction filtering , 1992 .

[26]  Bernard C. Picinbono,et al.  On circularity , 1994, IEEE Trans. Signal Process..