Ensemble Based Optimization and Tuning Algorithms

i) Use the available budget (e.g., simulator runs, number of function evaluations) sequentially, i.e., use information from search-space exploration to guide the search by building one or several meta models, e.g., random forest, linear regression, or Kriging. Choose new design points based on predictions from the meta model(s). Refine the meta model(s) stepwise to improve knowledge about the search space. ii) Try to cope with noise by improving confidence. Guarantee comparable confidence for search points. iii) Collect and report tuning process information for exploratory data analysis. iv) Provide mechanisms both for interactive and automated tuning.

[1]  J. Gittins Bandit processes and dynamic allocation indices , 1979 .

[2]  Thomas Bartz-Beielstein,et al.  SPOT: An R Package For Automatic and Interactive Tuning of Optimization Algorithms by Sequential Parameter Optimization , 2010, ArXiv.

[3]  Thomas Bartz-Beielstein,et al.  the future of experimental research , 2009, GECCO '09.

[4]  Thomas Bartz-Beielstein,et al.  The Future of Experimental Research , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[5]  Thomas Bartz-Beielstein,et al.  Experimental Methods for the Analysis of Optimization Algorithms , 2010 .

[6]  Alex M. Andrew,et al.  ROBOT LEARNING, edited by Jonathan H. Connell and Sridhar Mahadevan, Kluwer, Boston, 1993/1997, xii+240 pp., ISBN 0-7923-9365-1 (Hardback, 218.00 Guilders, $120.00, £89.95). , 1999, Robotica (Cambridge. Print).

[7]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[8]  Kurt Hornik,et al.  kernlab - An S4 Package for Kernel Methods in R , 2004 .

[9]  C. Dunnett Pairwise Multiple Comparisons in the Unequal Variance Case , 1980 .

[10]  Thomas Bartz-Beielstein,et al.  Design and Analysis of Optimization Algorithms Using Computational Statistics , 2004 .

[11]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[12]  Ole-Christoffer Granmo,et al.  A Bayesian Learning Automaton for Solving Two-Armed Bernoulli Bandit Problems , 2008, 2008 Seventh International Conference on Machine Learning and Applications.

[13]  Mehryar Mohri,et al.  Multi-armed Bandit Algorithms and Empirical Evaluation , 2005, ECML.

[14]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[15]  Thomas Bartz-Beielstein,et al.  The Sequential Parameter Optimization Toolbox , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[16]  Beat Kleiner,et al.  Graphical Methods for Data Analysis , 1983 .

[17]  J. Tukey The Philosophy of Multiple Comparisons , 1991 .

[18]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[19]  D. Wolfe,et al.  Nonparametric Statistical Methods. , 1974 .