Poly(Dimethylsiloxane) Waveguide Cantilevers for Optomechanical Sensing

The optical and structural properties of poly(dimethylsiloxane) (PDMS) are considered to define disposable cantilever-based micooptoelectromechanical systems (MOEMS) by ways of soft lithography and with a high degree of monolithic integration. The very low Young's modulus of this material relaxes the dimensions' requirements, being then possible to define thick PDMS structures with a sensitivity comparable to nanometer scale silicon counterparts. Experimental results using a light-emitting diode working at 670 nm have determined the resonant frequencies of the proposed MOEMS and are in agreement with the numerical simulations done. Finally, when a 2-mu L droplet of ethanol (1.58 mg) is dispensed on the cantilever, relative losses rise to 25 dB, returning to its initial value when the droplet evaporates.

[1]  Anja Boisen,et al.  Low-noise polymeric nanomechanical biosensors , 2006 .

[2]  Polymeric MOEMS Variable Optical Attenuator , 2006, IEEE Photonics Technology Letters.

[3]  S. Buttgenbach,et al.  SU-8 Optical Accelerometers , 2007, Journal of Microelectromechanical Systems.

[4]  K. Zinoviev,et al.  A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces , 2006, Journal of Lightwave Technology.

[5]  Anja Boisen,et al.  Polymeric cantilever-based biosensors with integrated readout , 2006 .

[6]  Joseph Zyss,et al.  Single-mode TE00-TM00 optical waveguides on SU-8 polymer , 2004 .

[7]  Luke P. Lee,et al.  Tunable microdoublet lens array , 2004 .

[8]  T. K. Gangopadhyay,et al.  Prospects for Fibre Bragg Gratings and Fabry-Perot Interferometers in fibre-optic vibration sensing , 2004 .

[9]  A. N. Simonov,et al.  Light scanner based on a viscoelastic stretchable grating. , 2005, Optics letters.

[10]  Laura M. Lechuga,et al.  Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices , 2006 .

[11]  J. Plaza,et al.  3-D modulable PDMS-based microlens system. , 2008, Optics express.

[12]  S Büttgenbach,et al.  Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing. , 2005, Lab on a chip.

[13]  S. Buttgenbach,et al.  Polymer microlenses with modified micromolding in capillaries (MIMIC) technology , 2005, IEEE Photonics Technology Letters.

[14]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[15]  Steven A. Soper,et al.  Out-of-plane microlens array fabricated using ultraviolet lithography , 2005 .

[16]  S. Buttgenbach,et al.  Integrated polymer optical accelerometer , 2005, IEEE Photonics Technology Letters.

[17]  Jörg Hübner,et al.  Integrated optical readout for miniaturization of cantilever-based sensor system , 2007 .

[18]  Daniel M. Anderson,et al.  The spreading of volatile liquid droplets on heated surfaces , 1995 .

[19]  S R Carneiro,et al.  Two-mode optical fiber accelerometer. , 1992, Optics letters.