Fuzzy pre-compensated fuzzy self-tuning fuzzy PID controller of 3 DOF planar robot manipulators

Control of an industrial robot includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. Proportional-integral-derivative (PID)-type fuzzy controller is a well-known conventional motion control strategy for manipulators which ensures global asymptotic stability. To enhance the PID-type fuzzy controller performance for the control of rigid planar robot manipulators, in this paper, a fuzzy pre-compensation of a fuzzy self tuning fuzzy PID controller is proposed. The proposed control scheme consists of a fuzzy logic-based pre-compensator followed by a fuzzy self tuning fuzzy PID controller. In the fuzzy self tuning fuzzy PID controller, a supervisory hierarchical fuzzy controller (SHFC) is used for tuning the input scaling factors of the fuzzy PID controller according to the actual tracking position error and the actual tracking velocity error. Numerical simulations using the dynamic model of a three DOF planar rigid robot manipulator with uncertainties show the effectiveness of the approach in set point tracking problems. Our results show that the proposed controller has superior performance compared to a conventional fuzzy PID controller.

[1]  Anthony Green,et al.  Dynamics and Trajectory Tracking Control of a Two-Link Robot Manipulator , 2004 .

[2]  Rafael Kelly,et al.  Stable computed-torque control of robot manipulators via fuzzy self-tuning , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[3]  Alan S. Morris,et al.  Fuzzy-GA-based trajectory planner for robot manipulators sharing a common workspace , 2006, IEEE Transactions on Robotics.

[4]  Byung Kook Yoo,et al.  Adaptive control of robot manipulator using fuzzy compensator , 2000, IEEE Trans. Fuzzy Syst..

[5]  Chun-Yi Su,et al.  A sliding mode controller with bound estimation for robot manipulators , 1993, IEEE Trans. Robotics Autom..

[6]  Hassan B. Kazemian,et al.  The SOF-PID controller for the control of a MIMO robot arm , 2002, IEEE Trans. Fuzzy Syst..

[7]  Meng Joo Er,et al.  Hybrid fuzzy proportional-integral plus conventional derivative control of linear and nonlinear systems , 2001, IEEE Trans. Ind. Electron..

[8]  Dr. Rainer Palm,et al.  Model Based Fuzzy Control , 1997, Springer Berlin Heidelberg.

[9]  Romeo Ortega,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[10]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[11]  VI. Conclusions , 1971 .

[12]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control - design and stability analysis , 1994 .

[13]  Hao Ying,et al.  A nonlinear fuzzy controller with linear control rules is the sum of a global two-dimensional multilevel relay and a local nonlinear proportional-integral controller , 1993, Autom..

[14]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[15]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[16]  Oscar Barambones,et al.  Robust neural control for robotic manipulators , 2002, Autom..

[17]  George K. I. Mann,et al.  Analysis of direct action fuzzy PID controller structures , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[18]  G. Feng,et al.  An adaptive fuzzy controller based on sliding mode for robot manipulators , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[19]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[20]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[21]  Weiping Li,et al.  Composite adaptive control of robot manipulators , 1989, Autom..

[22]  A. Green,et al.  Fuzzy and optimal control of a two-link flexible manipulator , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).

[23]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .