Axl as a potential therapeutic target for adamantinomatous craniopharyngiomas: based on single nucleus RNA-Seq and spatial transcriptome profiling.

[1]  K. Shannon,et al.  Precision Oncology for Papillary Craniopharyngioma. , 2023, The New England journal of medicine.

[2]  P. Brastianos,et al.  BRAF-MEK Inhibition in Newly Diagnosed Papillary Craniopharyngiomas. , 2023, The New England journal of medicine.

[3]  E. Erfurth Craniopharyngioma—An update on metabolic and cognitive complications and new therapy , 2023, Journal of internal medicine.

[4]  L. Zhong,et al.  Characteristics and factors influencing hypothalamic pituitary dysfunction in patients with craniopharyngioma , 2023, Frontiers in Endocrinology.

[5]  Xingfu Wang,et al.  Expression of S100A9 in adamantinomatous craniopharyngioma and its association with wet keratin formation , 2023, Experimental and Therapeutic Medicine.

[6]  Yuelong Wang,et al.  Single-cell RNA sequencing highlights intratumor heterogeneity and intercellular network featured in adamantinomatous craniopharyngioma , 2023, Science advances.

[7]  D. Tuveson,et al.  Activated fibroblasts in cancer: Perspectives and challenges. , 2023, Cancer cell.

[8]  T. Yock,et al.  Contemporary Biological Insights and Clinical Management of Craniopharyngioma. , 2022, Endocrine reviews.

[9]  M. Neurath,et al.  Organoids in gastrointestinal diseases: from experimental models to clinical translation , 2022, Gut.

[10]  A. Urs,et al.  Ghost cells unveiled: A comprehensive review. , 2022, Journal of oral biosciences.

[11]  Dongsheng Chen,et al.  Clinical and translational values of spatial transcriptomics , 2022, Signal Transduction and Targeted Therapy.

[12]  J. Minna,et al.  AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 T cells , 2022, Cell reports. Medicine.

[13]  Huarong Zhang,et al.  CD47 promotes the proliferation and migration of adamantinomatous craniopharyngioma cells by activating the MAPK/ERK pathway, and CD47 blockade facilitates microglia‐mediated phagocytosis , 2022, Neuropathology and applied neurobiology.

[14]  J. Pascual,et al.  Papillary Craniopharyngioma: A Type of Tumor Primarily Impairing the Hypothalamus – A Comprehensive Anatomo-Clinical Characterization of 350 Well-Described Cases , 2021, Neuroendocrinology.

[15]  Jun Pan,et al.  Adamantinomatous craniopharyngioma cyst fluid can trigger inflammatory activation of microglia to damage the hypothalamic neurons by inducing the production of β-amyloid , 2021, Journal of neuroinflammation.

[16]  T. Schwartz,et al.  Update on management of craniopharyngiomas , 2021, Journal of Neuro-Oncology.

[17]  Chen Liang,et al.  Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives , 2021, Molecular Cancer.

[18]  R. Kalluri,et al.  Clinical and therapeutic relevance of cancer-associated fibroblasts , 2021, Nature Reviews Clinical Oncology.

[19]  D. Siemann,et al.  Therapeutic Targeting of the Gas6/Axl Signaling Pathway in Cancer , 2021, International journal of molecular sciences.

[20]  J. Pascual,et al.  Strictly third ventricle craniopharyngiomas: pathological verification, anatomo-clinical characterization and surgical results from a comprehensive overview of 245 cases , 2021, Neurosurgical Review.

[21]  N. Rioux-Leclercq,et al.  Association of AXL and PD-L1 Expression with Clinical Outcomes in Patients with Advanced Renal Cell Carcinoma Treated with PD-1 Blockade , 2021, Clinical Cancer Research.

[22]  N. Almog,et al.  Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. , 2021, Cancer cell.

[23]  J. M. González-Meljem,et al.  Adamantinomatous craniopharyngioma as a model to understand paracrine and senescence-induced tumourigenesis , 2021, Cellular and Molecular Life Sciences.

[24]  B. Fullerton,et al.  Proton Radiation Therapy for Pediatric Craniopharyngioma Protons for Craniopharyngioma. , 2021, International journal of radiation oncology, biology, physics.

[25]  K. Huntoon,et al.  Neuropathology of Pituitary Adenomas and Sellar Lesions. , 2021, Neurosurgery.

[26]  R. Birge,et al.  Axl and Mertk Receptors Cooperate to Promote Breast Cancer Progression by Combined Oncogenic Signaling and Evasion of Host Antitumor Immunity , 2020, Cancer Research.

[27]  Guo Ci Teo,et al.  Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer , 2020, Cell.

[28]  Jun Pan,et al.  Identification of tumor stem-like cells in admanatimomatous craniopharyngioma and determination of these cells' pathological significance. , 2020, Journal of neurosurgery.

[29]  S. Chi,et al.  Immune checkpoint inhibition for pediatric patients with recurrent/refractory CNS tumors: a single institution experience , 2020, Journal of Neuro-Oncology.

[30]  D. Siemann,et al.  Gas6/Axl Signaling Pathway in the Tumor Immune Microenvironment , 2020, Cancers.

[31]  K. Tarte,et al.  Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. , 2020, Cancer discovery.

[32]  Morteza Chalabi Hajkarim,et al.  Deciphering the temporal heterogeneity of cancer-associated fibroblast subpopulations in breast cancer , 2020, Journal of Experimental & Clinical Cancer Research.

[33]  H. Clevers,et al.  Organoids in immunological research , 2019, Nature Reviews Immunology.

[34]  T. Merchant,et al.  Craniopharyngioma , 2019, Nature Reviews Disease Primers.

[35]  Yu‐quan Wei,et al.  AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications , 2019, Molecular Cancer.

[36]  A. Heimberger,et al.  Genetic and immune profiling for potential therapeutic targets in adult human craniopharyngioma , 2019, Clinical oncology and research.

[37]  E. Tindall,et al.  Immuno-oncological Efficacy of RXDX-106, a Novel TAM (TYRO3, AXL, MER) Family Small-Molecule Kinase Inhibitor. , 2019, Cancer research.

[38]  Haojia Wu,et al.  Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis. , 2018, Journal of the American Society of Nephrology : JASN.

[39]  B. Shafit-Zagardo,et al.  The role of TAM family receptors and ligands in the nervous system: From development to pathobiology , 2018, Pharmacology & therapeutics.

[40]  Sandro Santagata,et al.  Multiplexed immunofluorescence reveals potential PD-1/PD-L1 pathway vulnerabilities in craniopharyngioma , 2018, Neuro-oncology.

[41]  L. J. Lee,et al.  Activation of the Receptor Tyrosine Kinase AXL Regulates the Immune Microenvironment in Glioblastoma. , 2018, Cancer research.

[42]  Andrea Sottoriva,et al.  Patient-derived organoids model treatment response of metastatic gastrointestinal cancers , 2018, Science.

[43]  D. Adams,et al.  Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma , 2017, Nature Communications.

[44]  M. Souweidane,et al.  Molecular Analyses Reveal Inflammatory Mediators in the Solid Component and Cyst Fluid of Human Adamantinomatous Craniopharyngioma , 2017, Journal of neuropathology and experimental neurology.

[45]  J. Pascual,et al.  Craniopharyngioma adherence: a comprehensive topographical categorization and outcome-related risk stratification model based on the methodical examination of 500 tumors. , 2016, Neurosurgical focus.

[46]  J. Martinez-Barbera,et al.  Molecular pathology of adamantinomatous craniopharyngioma: review and opportunities for practice. , 2016, Neurosurgical focus.

[47]  Yi Liu,et al.  Periostin activates pathways involved in epithelial–mesenchymal transition in adamantinomatous craniopharyngioma , 2016, Journal of the Neurological Sciences.

[48]  A. Huang,et al.  Neuroradiological findings of bleomycin leakage in cystic craniopharyngioma. Report of three cases. , 2007, Journal of neurosurgery.

[49]  I. Blümcke,et al.  Nuclear β-catenin accumulation associates with epithelial morphogenesis in craniopharyngiomas , 2007, Acta Neuropathologica.

[50]  David J. Anderson,et al.  SOX10 Maintains Multipotency and Inhibits Neuronal Differentiation of Neural Crest Stem Cells , 2003, Neuron.

[51]  Xuesong Yang,et al.  Engraftable neural crest stem cells derived from cynomolgus monkey embryonic stem cells. , 2015, Biomaterials.