A linear formulation for disk conformal parameterization of simply-connected open surfaces

Surface parameterization is widely used in computer graphics and geometry processing. It simplifies challenging tasks such as surface registrations, morphing, remeshing and texture mapping. In this paper, we present an efficient algorithm for computing the disk conformal parameterization of simply-connected open surfaces. A double covering technique is used to turn a simply-connected open surface into a genus-0 closed surface, and then a fast algorithm for parameterization of genus-0 closed surfaces can be applied. The symmetry of the double covered surface preserves the efficiency of the computation. A planar parameterization can then be obtained with the aid of a Möbius transformation and the stereographic projection. After that, a normalization step is applied to guarantee the circular boundary. Finally, we achieve a bijective disk conformal parameterization by a composition of quasi-conformal mappings. Experimental results demonstrate a significant improvement in the computational time by over 60%. At the same time, our proposed method retains comparable accuracy, bijectivity and robustness when compared with the state-of-the-art approaches. Applications to texture mapping are presented for illustrating the effectiveness of our proposed algorithm.

[1]  Lok Ming Lui,et al.  Variational Method on Riemann Surfaces using Conformal Parameterization and its Applications to Image Processing , 2008 .

[2]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[3]  Lok Ming Lui,et al.  FLASH: Fast Landmark Aligned Spherical Harmonic Parameterization for Genus-0 Closed Brain Surfaces , 2015, SIAM J. Imaging Sci..

[4]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[5]  Ron Kikinis,et al.  Conformal Geometry and Brain Flattening , 1999, MICCAI.

[6]  Lok Ming Lui,et al.  Optimized Conformal Surface Registration with Shape-based Landmark Matching , 2010, SIAM J. Imaging Sci..

[7]  F. P. Gardiner,et al.  Quasiconformal Teichmuller Theory , 1999 .

[8]  A. She SURFACE PARAMETERIZATION FOR MESHING BY TRIANGULATION FLATTENING , 2000 .

[9]  Lok Ming Lui,et al.  Landmark constrained genus zero surface conformal mapping and its application to brain mapping research , 2007 .

[10]  Christophe Geuzaine,et al.  High‐quality surface remeshing using harmonic maps , 2010 .

[11]  E. Sturler,et al.  Surface Parameterization for Meshing by Triangulation Flattenin , 2000 .

[12]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.

[13]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[14]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[15]  Lok Ming Lui,et al.  Fast Disk Conformal Parameterization of Simply-Connected Open Surfaces , 2015, J. Sci. Comput..

[16]  Shan Zhao,et al.  Minimal molecular surfaces and their applications , 2008, J. Comput. Chem..

[17]  Lok Ming Lui,et al.  Shape-Based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow , 2010, MICCAI.

[18]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[19]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[20]  Günther Greiner,et al.  Remeshing triangulated surfaces with optimal parameterizations , 2001, Comput. Aided Des..

[21]  Chengfeng Wen,et al.  Geometric Registration of High-Genus Surfaces , 2013, SIAM J. Imaging Sci..

[22]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.

[23]  Lok Ming Lui,et al.  Texture Map and Video Compression Using Beltrami Representation , 2013, SIAM J. Imaging Sci..

[24]  Sotirios A. Tsaftaris,et al.  Medical Image Computing and Computer Assisted Intervention , 2017 .

[25]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[26]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[27]  Lok Ming Lui,et al.  Landmark- and Intensity-Based Registration with Large Deformations via Quasi-conformal Maps , 2013, SIAM J. Imaging Sci..

[28]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[29]  Lok Ming Lui,et al.  Shape Analysis of Planar Multiply-Connected Objects Using Conformal Welding , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[31]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[32]  Pierre Alliez,et al.  Spectral Conformal Parameterization , 2008, Comput. Graph. Forum.

[33]  Thomas Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, SIGGRAPH 2009.

[34]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[35]  Kai Hormann,et al.  Parameterization of Triangulations and Unorganized Points , 2002, Tutorials on Multiresolution in Geometric Modelling.

[36]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[37]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[38]  David Mumford,et al.  2D-Shape Analysis Using Conformal Mapping , 2004, CVPR.

[39]  Peter Li,et al.  LECTURES ON HARMONIC MAPS , 2011 .

[40]  Lok Ming Lui,et al.  Folding-Free Global Conformal Mapping for Genus-0 Surfaces by Harmonic Energy Minimization , 2013, Journal of Scientific Computing.

[41]  Shing-Tung Yau,et al.  Optimal Global Conformal Surface Parameterization for Visualization , 2004, Commun. Inf. Syst..

[42]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[43]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[44]  Feng Luo COMBINATORIAL YAMABE FLOW ON SURFACES , 2003 .

[45]  Lok Ming Lui,et al.  Optimization of Surface Registrations Using Beltrami Holomorphic Flow , 2010, J. Sci. Comput..

[46]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[47]  Lok Ming Lui,et al.  A Splitting Method for Diffeomorphism Optimization Problem Using Beltrami Coefficients , 2015, J. Sci. Comput..

[48]  Shi-Min Hu,et al.  Generalized Discrete Ricci Flow , 2009, Comput. Graph. Forum.

[49]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[50]  Lok Ming Lui,et al.  Brain Surface Conformal Parameterization Using Riemann Surface Structure , 2007, IEEE Transactions on Medical Imaging.

[51]  Y. Tong,et al.  Geometric modeling of subcellular structures, organelles, and multiprotein complexes , 2012, International journal for numerical methods in biomedical engineering.

[52]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[53]  Roberto Scopigno,et al.  Computer Graphics forum , 2003, Computer Graphics Forum.

[54]  Lok Ming Lui,et al.  Optimization of Brain Conformal Mapping with Landmarks , 2005, MICCAI.