Variational and numerical methods for symmetric matrix pencils

A review is presented of some recent advances in variational and numerical methods for symmetric matrix pencils λA – B in which A is nonsingular, A and B are hermitian, but neither is definite. The topics covered include minimax and maximin characterisations of eigenvalues, perturbation by semidefinite matrices and interlacing properties of real eigenvalues, Rayleigh quotient algorithms and their convergence properties, Rayleigh-Ritz methods employing Krylov subspaces, and a generalised Lanczos algorithm.

[1]  F. R. Gantmakher The Theory of Matrices , 1984 .

[2]  W. Kahan,et al.  Residual Bounds on Approximate Eigensystems of Nonnormal Matrices , 1982 .

[3]  R. Courant Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik , 1920 .

[4]  S. H. Crandall Iterative procedures related to relaxation methods for eigenvalue problems , 1951 .

[5]  E. Fischer Über quadratische Formen mit reellen Koeffizienten , 1905 .

[6]  N. Burgoyne,et al.  Normal forms for real linear Hamiltonian systems with purely imaginary eigenvalues , 1974 .

[7]  G. Temple,et al.  The accuracy of Rayleigh’s method of calculating the natural frequencies of vibrating systems , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  R. E. L. Turner Some variational principles for a nonlinear eigenvalue problem , 1967 .

[9]  B. Parlett The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices , 1974 .

[10]  E. Rogers A mimmax theory for overdamped systems , 1964 .

[11]  P. Dooren,et al.  The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .

[12]  A. Ostrowski On the convergence of the Rayleigh Quotient Iteration for the computation of characteristic roots and vectors. VI , 1959 .

[13]  Christopher C. Paige,et al.  The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .

[14]  Variational principles and numerical algorithms for symmetric matrix pencils , 1989 .

[15]  P. Lancaster A generalised rayleigh quotient iteration for lambda-matrices , 1961 .

[16]  Christopher D. Beatie,et al.  Localization criteria and containment for Rayleigh quotient iteration , 1989 .

[17]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[18]  K. Meyer,et al.  Canonical forms for symplectic and Hamiltonian matrices , 1974 .

[19]  Leiba Rodman,et al.  Matrices and indefinite scalar products , 1983 .

[20]  P. Lancaster,et al.  Variational Properties and Rayleigh Quotient Algorithms for Symmetric Matrix Pencils , 1989 .

[21]  G. Stewart Pertubation bounds for the definite generalized eigenvalue problem , 1979 .

[22]  Peter Lancaster,et al.  Rayleigh-Ritz and Lanczos methods for symmetric matrix pencils , 1993 .

[23]  A. Ostrowski On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. I , 1957 .

[24]  Axel Ruhe,et al.  Lanczos algorithms and field of value rotations for symmetric matrix pencils , 1987 .

[25]  C. R. Crawford A Stable Generalized Eigenvalue Problem , 1976 .

[26]  Beresford N. Parlett,et al.  Use of an Indefinite Inner Product for Computing Damped Natural Modes , 1988 .

[27]  A minimax characterization for eigenvalues of hermitian pencils. II , 1993 .

[28]  S. Kaniel Estimates for Some Computational Techniques - in Linear Algebra , 1966 .

[29]  William Kahan,et al.  On the convergence of a practical QR algorithm , 1968, IFIP Congress.

[30]  R. Duffin A Minimax Theory for Overdamped Networks , 1955 .

[31]  Y. Saad On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .

[32]  Peter Lancaster,et al.  Inverse spectral problems for linear and quadratic matrix pencils , 1988 .