Variational and numerical methods for symmetric matrix pencils
暂无分享,去创建一个
[1] F. R. Gantmakher. The Theory of Matrices , 1984 .
[2] W. Kahan,et al. Residual Bounds on Approximate Eigensystems of Nonnormal Matrices , 1982 .
[3] R. Courant. Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik , 1920 .
[4] S. H. Crandall. Iterative procedures related to relaxation methods for eigenvalue problems , 1951 .
[5] E. Fischer. Über quadratische Formen mit reellen Koeffizienten , 1905 .
[6] N. Burgoyne,et al. Normal forms for real linear Hamiltonian systems with purely imaginary eigenvalues , 1974 .
[7] G. Temple,et al. The accuracy of Rayleigh’s method of calculating the natural frequencies of vibrating systems , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[8] R. E. L. Turner. Some variational principles for a nonlinear eigenvalue problem , 1967 .
[9] B. Parlett. The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices , 1974 .
[10] E. Rogers. A mimmax theory for overdamped systems , 1964 .
[11] P. Dooren,et al. The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .
[12] A. Ostrowski. On the convergence of the Rayleigh Quotient Iteration for the computation of characteristic roots and vectors. VI , 1959 .
[13] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[14] Variational principles and numerical algorithms for symmetric matrix pencils , 1989 .
[15] P. Lancaster. A generalised rayleigh quotient iteration for lambda-matrices , 1961 .
[16] Christopher D. Beatie,et al. Localization criteria and containment for Rayleigh quotient iteration , 1989 .
[17] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[18] K. Meyer,et al. Canonical forms for symplectic and Hamiltonian matrices , 1974 .
[19] Leiba Rodman,et al. Matrices and indefinite scalar products , 1983 .
[20] P. Lancaster,et al. Variational Properties and Rayleigh Quotient Algorithms for Symmetric Matrix Pencils , 1989 .
[21] G. Stewart. Pertubation bounds for the definite generalized eigenvalue problem , 1979 .
[22] Peter Lancaster,et al. Rayleigh-Ritz and Lanczos methods for symmetric matrix pencils , 1993 .
[23] A. Ostrowski. On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. I , 1957 .
[24] Axel Ruhe,et al. Lanczos algorithms and field of value rotations for symmetric matrix pencils , 1987 .
[25] C. R. Crawford. A Stable Generalized Eigenvalue Problem , 1976 .
[26] Beresford N. Parlett,et al. Use of an Indefinite Inner Product for Computing Damped Natural Modes , 1988 .
[27] A minimax characterization for eigenvalues of hermitian pencils. II , 1993 .
[28] S. Kaniel. Estimates for Some Computational Techniques - in Linear Algebra , 1966 .
[29] William Kahan,et al. On the convergence of a practical QR algorithm , 1968, IFIP Congress.
[30] R. Duffin. A Minimax Theory for Overdamped Networks , 1955 .
[31] Y. Saad. On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .
[32] Peter Lancaster,et al. Inverse spectral problems for linear and quadratic matrix pencils , 1988 .