Implicit Schemes for the Fokker-Planck-Landau Equation

We propose time implicit schemes to solve the homogeneous Fokker--Planck--Landau equation in both the isotropic and 3-dimensional geometries. These schemes have properties of conservation and entropy. Moreover, they allow for large time steps, making them faster than the usual explicit schemes. To solve the involved linear systems, we prove that the use of Krylov-like solvers preserves the conservation properties. We show in particular that the conjugate gradient method can be used. Numerical tests are performed for the isotropic case and demonstrate an important gain in terms of CPU time, with the same accuracy as explicit schemes. This work is a first step to the development of fast implicit schemes to solve a class of inhomogeneous kinetic equations.

[1]  Pierre Degond,et al.  An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory , 1994 .

[2]  Lorenzo Pareschi,et al.  A Fourier spectral method for homogeneous boltzmann equations , 1996 .

[3]  Xavier Antoine,et al.  Wavelet approximations of a collision operator in kinetic theory , 2003 .

[4]  Stéphane Cordier,et al.  Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .

[5]  Lorenzo Pareschi,et al.  A Numerical Method for the Accurate Solution of the Fokker–Planck–Landau Equation in the Nonhomogeneous Case , 2002 .

[6]  Mohammed Lemou SOLUTIONS EXACTES DE L'EQUATION DE FOKKER-PLANCK , 1994 .

[7]  Luc Mieussens,et al.  Fast implicit schemes for the Fokker–Planck–Landau equation , 2004 .

[8]  Pierre Degond,et al.  Fast Algorithms for Numerical, Conservative, and Entropy Approximations of the Fokker-Planck-Landau Equation , 1997 .

[9]  George H. Miley,et al.  An implicit energy-conservative 2D Fokker-Planck algorithm: II. Jacobian-free Newton—Krylov solver , 2000 .

[10]  Y. Berezin,et al.  Conservative finite-difference schemes for the Fokker-Planck equations not violating the law of an increasing entropy , 1987 .

[11]  G. Toscani,et al.  Fast spectral methods for the Fokker-Planck-Landau collision operator , 2000 .

[12]  Stéphane Cordier,et al.  Numerical Analysis of the Isotropic Fokker–Planck–Landau Equation , 2002 .

[13]  Christian Lécot,et al.  Numerical simulation of the plasma of an electron cyclotron resonance ion source , 2003 .

[14]  G. Toscani,et al.  Relaxation Schemes for Nonlinear Kinetic Equations , 1997 .

[15]  D. A. Knoll,et al.  An Implicit Energy-Conservative 2 D Fokker – Planck Algorithm I . Difference Scheme , 1999 .

[16]  E. M. Epperlein,et al.  Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .

[17]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[18]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[19]  Mohammed Lemou,et al.  Multipole expansions for the Fokker-Planck-Landau operator , 1998 .

[20]  M. G. RUSBRIDGE,et al.  Kinetic Theory , 1969, Nature.

[21]  M. J. Englefield Exact solutions of a Fokker-Planck equation , 1988 .

[22]  D. A. Knoll,et al.  An Implicit Energy-Conservative 2D Fokker—Planck Algorithm , 2000 .

[23]  A. R. Bell,et al.  An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-D with magnetic fields , 2004 .