Implicit Schemes for the Fokker-Planck-Landau Equation
暂无分享,去创建一个
[1] Pierre Degond,et al. An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory , 1994 .
[2] Lorenzo Pareschi,et al. A Fourier spectral method for homogeneous boltzmann equations , 1996 .
[3] Xavier Antoine,et al. Wavelet approximations of a collision operator in kinetic theory , 2003 .
[4] Stéphane Cordier,et al. Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .
[5] Lorenzo Pareschi,et al. A Numerical Method for the Accurate Solution of the Fokker–Planck–Landau Equation in the Nonhomogeneous Case , 2002 .
[6] Mohammed Lemou. SOLUTIONS EXACTES DE L'EQUATION DE FOKKER-PLANCK , 1994 .
[7] Luc Mieussens,et al. Fast implicit schemes for the Fokker–Planck–Landau equation , 2004 .
[8] Pierre Degond,et al. Fast Algorithms for Numerical, Conservative, and Entropy Approximations of the Fokker-Planck-Landau Equation , 1997 .
[9] George H. Miley,et al. An implicit energy-conservative 2D Fokker-Planck algorithm: II. Jacobian-free Newton—Krylov solver , 2000 .
[10] Y. Berezin,et al. Conservative finite-difference schemes for the Fokker-Planck equations not violating the law of an increasing entropy , 1987 .
[11] G. Toscani,et al. Fast spectral methods for the Fokker-Planck-Landau collision operator , 2000 .
[12] Stéphane Cordier,et al. Numerical Analysis of the Isotropic Fokker–Planck–Landau Equation , 2002 .
[13] Christian Lécot,et al. Numerical simulation of the plasma of an electron cyclotron resonance ion source , 2003 .
[14] G. Toscani,et al. Relaxation Schemes for Nonlinear Kinetic Equations , 1997 .
[15] D. A. Knoll,et al. An Implicit Energy-Conservative 2 D Fokker – Planck Algorithm I . Difference Scheme , 1999 .
[16] E. M. Epperlein,et al. Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .
[17] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[18] P. Bhatnagar,et al. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .
[19] Mohammed Lemou,et al. Multipole expansions for the Fokker-Planck-Landau operator , 1998 .
[20] M. G. RUSBRIDGE,et al. Kinetic Theory , 1969, Nature.
[21] M. J. Englefield. Exact solutions of a Fokker-Planck equation , 1988 .
[22] D. A. Knoll,et al. An Implicit Energy-Conservative 2D Fokker—Planck Algorithm , 2000 .
[23] A. R. Bell,et al. An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-D with magnetic fields , 2004 .