Hyperbolicity of Direct Products of Graphs

If $X$ is a geodesic metric space and $x_1,x_2,x_3\in X$, a {\it geodesic triangle} $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\delta$-\emph{hyperbolic} $($in the Gromov sense$)$ if any side of $T$ is contained in a $\delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. If $X$ is hyperbolic, we denote by $\delta(X)$ the sharp hyperbolicity constant of $X$, i.e., $\delta(X)=\inf\{\delta\ge 0: \, X \, \text{ is $\delta$-hyperbolic}\,\}.$ Some previous works characterize the hyperbolic product graphs (for the Cartesian, strong, join, corona and lexicographic products) in terms of properties of the factor graphs. However, the problem with the direct product is more complicated. In this paper, we prove that if the direct product $G_1\times G_2$ is hyperbolic, then one factor is hyperbolic and the other one is bounded. Also, we prove that this necessary condition is, in fact, a characterization in many cases. In other cases, we find characterizations which are not so simple. Furthermore, we obtain formulae or good bounds for the hyperbolicity constant of the direct product of some important graphs.

[1]  José M. Rodríguez,et al.  Hyperbolicity in the corona and join of graphs , 2014, 1410.2938.

[2]  Yilun Shang On the likelihood of forests , 2016 .

[3]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[4]  Álvaro Martínez-Pérez,et al.  Chordality Properties and Hyperbolicity on Graphs , 2015, Electron. J. Comb..

[5]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[6]  Jose Maria Sigarreta,et al.  On the Hyperbolicity Constant of Line Graphs , 2011, Electron. J. Comb..

[8]  José M. Rodríguez,et al.  Gromov hyperbolicity of periodic planar graphs , 2014 .

[9]  J. Koolen,et al.  On the Hyperbolicity of Chordal Graphs , 2001 .

[10]  Chengpeng Zhang,et al.  Chordality and hyperbolicity of a graph , 2009, 0910.3544.

[11]  Jose Maria Sigarreta,et al.  Gromov Hyperbolicity of Regular Graphs , 2017, Ars Comb..

[12]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[13]  Jose Maria Sigarreta,et al.  Computing the hyperbolicity constant , 2011, Comput. Math. Appl..

[14]  V. Shchur A quantitative version of the Morse lemma and quasi-isometries fixing the ideal boundary , 2013 .

[15]  Yaokun Wu,et al.  Hyperbolicity and Chordality of a Graph , 2011, Electron. J. Comb..

[16]  David Coudert,et al.  On the hyperbolicity of bipartite graphs and intersection graphs , 2016, Discret. Appl. Math..

[17]  E. Tourís Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces , 2011 .

[18]  Venancio Alvarez,et al.  Gromov hyperbolicity of Denjoy Domains , 2007 .

[19]  José M. Rodríguez,et al.  On the hyperbolicity of edge-chordal and path-chordal graphs , 2016 .

[20]  Wilfried Imrich,et al.  Finite and infinite hypercubes as direct products , 2006, Australas. J Comb..

[21]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metric spaces , 2004 .

[22]  José M. Rodríguez,et al.  Gromov Hyperbolicity of Periodic Graphs , 2016 .

[23]  Richard Hammack,et al.  Centers of n-fold tensor products of graphs , 2004, Discuss. Math. Graph Theory.

[24]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..

[25]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  José M. Rodríguez,et al.  Gromov Hyperbolicity in Mycielskian Graphs , 2017, Symmetry.

[27]  Wilfried Imrich,et al.  Hypercubes As Direct Products , 2005, SIAM J. Discret. Math..

[28]  Richard Hammack Minimum cycle bases of direct products of bipartite graphs , 2006, Australas. J Comb..

[29]  Shing-Tung Yau,et al.  Graph homotopy and Graham homotopy , 2001, Discret. Math..

[30]  Ruth Charney,et al.  Artin groups of finite type are biautomatic , 1992 .

[31]  Yilun Shang Lack of Gromov-Hyperbolicity in Colored Random Networks , 2011 .

[32]  Xuding Zhu A SURVEY ON HEDETNIEMI'S CONJECTURE , 1998 .

[33]  Blair D. Sullivan,et al.  Tree-Like Structure in Large Social and Information Networks , 2013, 2013 IEEE 13th International Conference on Data Mining.

[34]  Feodor F. Dragan,et al.  Notes on diameters, centers, and approximating trees of delta-hyperbolic geodesic spaces and graphs , 2008, Electron. Notes Discret. Math..

[35]  Yilun Shang,et al.  Lack of Gromov-hyperbolicity in small-world networks , 2012 .

[36]  Jose Maria Sigarreta,et al.  Planarity and Hyperbolicity in Graphs , 2015, Graphs Comb..

[37]  José M. Rodríguez,et al.  Gromov Hyperbolicity in Strong Product Graphs , 2013, Electron. J. Comb..

[38]  Yuval Shavitt,et al.  Hyperbolic embedding of internet graph for distance estimation and overlay construction , 2008, TNET.

[39]  Jose Maria Sigarreta,et al.  Hyperbolicity and complement of graphs , 2011, Appl. Math. Lett..

[40]  David Coudert,et al.  Recognition of C4-Free and 1/2-Hyperbolic Graphs , 2014, SIAM J. Discret. Math..

[41]  Jose Maria Sigarreta,et al.  New inequalities on the hyperbolicity constant of line graphs , 2014, Ars Comb..

[42]  Panos Papasoglu An algorithm detecting hyperbolicity , 1994, Geometric and Computational Perspectives on Infinite Groups.

[43]  Edmond A. Jonckheere,et al.  Effective resistance criterion for negative curvature: Application to congestion control , 2016, 2016 IEEE Conference on Control Applications (CCA).

[44]  Wilfried Imrich,et al.  A prime factor theorem for a generalized direct product , 2006, Discuss. Math. Graph Theory.

[45]  J. M. Sigarreta Hyperbolicity in median graphs , 2013 .

[46]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[47]  José M. Rodríguez,et al.  On the Hyperbolicity Constant in Graph Minors , 2018 .

[48]  Feodor F. Dragan,et al.  Metric tree-like structures in real-life networks: an empirical study , 2014, ArXiv.

[49]  H. Kheddouci,et al.  Hamiltonian Cycle Decomposition of Kronecker Product of some Cubic Graphs by Cycles , 1995 .

[50]  Victor Chepoi,et al.  Cop and Robber Game and Hyperbolicity , 2013, SIAM J. Discret. Math..

[51]  Quasi-geodesic segments and Gromov hyperbolic spaces , 1996 .

[52]  J. Rodríguez Characterization of Gromov hyperbolic short graphs , 2014 .

[53]  P. Paulraja,et al.  Hamilton cycles in tensor product of graphs , 1998, Discret. Math..

[54]  José M. Rodríguez,et al.  Gromov hyperbolic cubic graphs , 2012 .

[55]  Jose Maria Sigarreta,et al.  Mathematical Properties on the Hyperbolicity of Interval Graphs , 2017, Symmetry.

[56]  Subhash Suri,et al.  Metric Embedding, Hyperbolic Space, and Social Networks , 2014, Symposium on Computational Geometry.

[57]  Laurent Viennot,et al.  Treewidth and Hyperbolicity of the Internet , 2011, 2011 IEEE 10th International Symposium on Network Computing and Applications.

[58]  Wilfried Imrich,et al.  Factoring cardinal product graphs in polynomial time , 1998, Discret. Math..

[59]  D. Coudert,et al.  Exact and approximate algorithms for computing the hyperbolicity of large-scale graphs , 2012 .

[60]  Pranava K. Jha,et al.  Independence in Direct-Product Graphs , 1998, Ars Comb..

[61]  David Coudert,et al.  On the recognition of $C_4$-free and $1/2$-hyperbolic graphs , 2014 .

[62]  Jose Maria Sigarreta,et al.  Small values of the hyperbolicity constant in graphs , 2016, Discret. Math..

[63]  José M. Rodríguez,et al.  Gromov hyperbolicity in Cartesian product graphs , 2010 .

[64]  Counting subgraphs in hyperbolic graphs with symmetry , 2013, 1311.4450.

[65]  M. Perc,et al.  Network science of biological systems at different scales: A review. , 2017, Physics of life reviews.

[66]  Marián Boguñá,et al.  Sustaining the Internet with Hyperbolic Mapping , 2010, Nature communications.

[67]  Yilun Shang Non-Hyperbolicity of Random Graphs with Given Expected Degrees , 2013 .

[68]  E. Jonckheere Contrôle du trafic sur les réseaux à géométrie hyperbolique : Vers une théorie géométrique de la sécurité de l'acheminement de l'information , 2003 .

[69]  David Coudert,et al.  Applying clique-decomposition for computing Gromov hyperbolicity , 2017, Theor. Comput. Sci..

[70]  Antoine Vigneron,et al.  Computing the Gromov hyperbolicity of a discrete metric space , 2012, Inf. Process. Lett..

[71]  Feodor F. Dragan,et al.  Metric tree‐like structures in real‐world networks: an empirical study , 2016, Networks.

[72]  Jacobus H. Koolen,et al.  Hyperbolic Bridged Graphs , 2002, Eur. J. Comb..

[73]  Feodor F. Dragan,et al.  Core congestion is inherent in hyperbolic networks , 2016, SODA.

[74]  Shi Li,et al.  Traffic Congestion in Expanders, $(p,δ)$--Hyperbolic Spaces and Product of Trees , 2013, ArXiv.

[75]  P. M. Weichsel THE KRONECKER PRODUCT OF GRAPHS , 1962 .