The Form and Function of Spider Orb Webs: Evolution from Silk to Ecosystems

Spiders are the preeminent silk craftsmen among arthropods and are best known for producing aerial orb webs that snare flying insects. Orb web spiders are ubiquitous predators in terrestrial ecosystems and are popular models for behavioural and ecological research, in part due to the ease of characterizing the shapes of orb webs. Orb webs are composite structures built from multiple types of silks, each with its own unique molecular structure and mechanical function, such that orb webs also link together evolutionary research from the genes coding for silk proteins to whole web function in the environment. Yet, orb webs are only intermediate structures in the evolutionary diversification of silk use among spiders, acting as stepping stones facilitating the origin of new web types and increased spider diversification. Here, we review the current research on the form and function of spider orb webs. We provide a comprehensive introduction to all aspects of orb web biology, suitable for any new investigation into orb web biology. While other reviews exist individually for webs, silk, and spider evolution, we hope that the synthetic nature of this review will facilitate a more integrated approach by future investigators. Finally, we explore in more detail some of the most dynamic areas of orb web biology to suggest promising venues for the next decade of research on these fascinating creatures and their silken snares. In particular, we discuss how spider webs might drive speciation, the dramatic growth in our understanding of the molecular ecology of spider silk, and the importance of a greater role for spider biology per se in silk biomimicry.

[1]  B. Knoflach Mating in Theridion varians Hahn and related species (Araneae: Theridiidae) , 1998 .

[2]  W. Nentwig The non-filter function of orb webs in spiders , 1983, Oecologia.

[3]  Y. Hénaut,et al.  Interspecific aggregation around the web of the orb spider Nephila clavipes: consequences for the web architecture of Leucauge venusta , 2010 .

[4]  Daiqin Li,et al.  Predator-induced plasticity in web-building behaviour , 2004, Animal Behaviour.

[5]  S. Zschokke ULTRAVIOLET REFLECTANCE OF SPIDERS ANDTHEIR WEBS , 2002 .

[6]  J. Coddington,et al.  Web-construction Behaviour in Australian Phonognatha and the Phylogeny of Nephiline and Tetragnathid Spiders (Araneae : Tetragnathidae) , 1995 .

[7]  F. Ko,et al.  Modeling of mechanical properties and structural design of spider web. , 2004, Biomacromolecules.

[8]  T. Bilde,et al.  Spider Behaviour: Group living in spiders: cooperative breeding and coloniality , 2011 .

[9]  S. Toft,et al.  Nutrient composition of the prey's diet affects growth and survivorship of a generalist predator , 2001, Oecologia.

[10]  W. Eberhard,et al.  Factors affecting numbers and kinds of prey caught in artificial spider webs, with considerations of how orb webs trap prey , 1980 .

[11]  M. Kuntner,et al.  Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns in Nephilidae , 2010 .

[12]  C. C. Horton A Defensive Function for the Stabilimenta of Two Orb Weaving Spiders (Araneae, Araneidae) , 1980 .

[13]  Fritz Vollrath,et al.  Silk production in a spider involves acid bath treatment , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  Markus J Buehler,et al.  Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. , 2008, Nano letters.

[15]  M. Herberstein,et al.  Spider Behaviour: Flexibility And Versatility , 2011 .

[16]  R. Lewis,et al.  Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. , 1998, Journal of molecular biology.

[17]  B. Opell Factors governing the stickiness of cribellar prey capture threads in the spider family Uloboridae , 1994, Journal of morphology.

[18]  M. Elgar,et al.  Signalling conflict between prey and predator attraction , 2001 .

[19]  Kensuke Nakata Does ontogenetic change in orb web asymmetry reflect biogenetic law? , 2010, Naturwissenschaften.

[20]  K. Nutt,et al.  KAIRA IS A LIKELY SISTER GROUP TO METEPEIRA , AND ZYGIELLA IS AN ARANEID (ARANEAE, ARANEIDAE) : EVIDENCE FROM MITOCHONDRIAL DN A , 1997 .

[21]  C. Craig Insect perception of spider orb webs in three light habitats , 1988 .

[22]  B. Opell,et al.  RESTING POSTURES OF ORB-WEAVING ULOBORID SPIDER S (ARANEAE, ULOBORIDAE) , 1983 .

[23]  Wayne W. Tolbert Predator Avoidance Behavior and Web Defensive Structures in the Orb Weavers, Argiope aurantia and Argiope trifasciata (Araneae, Araneidae) , 1975 .

[24]  C. Craig,et al.  The ecological and evolutionary interdependence between web architecture and web silk spun by orb web weaving spiders , 1987 .

[25]  R. Cardullo,et al.  Polarized Light Microscopy, Variability in Spider Silk Diameters, and the Mechanical Characterization of Spider Silk , 2005 .

[26]  Koichi Tanaka,et al.  Energetic cost of web construction and its effect on web relocation in the web-building spider Agelena limbata , 1989, Oecologia.

[27]  Sean J. Blamires,et al.  Multiple structures interactively influence prey capture efficiency in spider orb webs , 2010, Animal Behaviour.

[28]  G. Plaza,et al.  Volume constancy during stretching of spider silk. , 2006, Biomacromolecules.

[29]  L. Higgins Female gigantism in a New Guinea population of the spider Nephila maculata , 2002 .

[30]  Christopher Viney,et al.  Fibre science: Supercontraction stress in wet spider dragline , 2002, Nature.

[31]  D. Hochuli,et al.  Habitat selection and web plasticity by the orb spider Argiope keyserlingi (Argiopidae): Do they compromise foraging success for predator avoidance? , 2007 .

[32]  J. Endler The Color of Light in Forests and Its Implications , 1993 .

[33]  Samuel Zschokke,et al.  Prey-capture strategies in sympatric web-building spiders , 2006 .

[34]  L. Chittka,et al.  Why are there so many and so few white flowers , 1996 .

[35]  A. Blejec,et al.  Ecology and web allometry of Clitaetra irenae, an arboricolous African orb-weaving spider (Araneae, Araneoidea, Nephilidae) , 2008 .

[36]  L. Van Langenhove,et al.  EGG SAC STRUCTURE OF ZYGIELLA X-NOTATA (ARACHNIDA, ARANEIDAE) , 2005 .

[37]  A. L. Turnbull ECOLOGY OF THE TRUE SPIDERS (ARANEOMORPHAE ) , 1973 .

[38]  M. O. Gonzaga,et al.  Parasitoid-induced mortality of Araneus omnicolor (Araneae, Araneidae) by Hymenoepimecis sp. (Hymenoptera, Ichneumonidae) in southeastern Brazil , 2007, Naturwissenschaften.

[39]  Todd A. Blackledge,et al.  Does the Giant Wood Spider Nephila pilipes Respond to Prey Variation by Altering Web or Silk Properties , 2007 .

[40]  B. Opell,et al.  Adhesive efficiency of spider prey capture threads. , 2009, Zoology.

[41]  Y. Baba Testing for the effect of detritus stabilimenta on foraging success in Cyclosa octotuberculata (Araneae : Araneidae) , 2003 .

[42]  W. Eberhard The ‘inverted ladder’ orb web of Scoloderus sp. and the intermediate orb of Eustala (?) sp. Araneae: Araneidae , 1975 .

[43]  M. Townley,et al.  Orb web recycling in Araneus cavaticus (Araneae, Araneidae) with an emphasis on the adhesive spiral component, GABamide , 1988 .

[44]  D. Brent A COMPARISON OF CAPTURE THREAD AND ARCHITECTURAL FEATURES O F DEINOPOID AND ARANEOID ORB-WEB S , 1997 .

[45]  G. Uetz,et al.  Prey Selection in an Orb-Weaving Spider:Micrathena Gracilis (Araneae: Araneidae) , 1987 .

[46]  Whorled, wiled webs. , 1996, Trends in ecology & evolution.

[47]  M. Elgar,et al.  Foraging strategies in orb-spinning spiders: Ambient light and silk decorations in Argiope aetherea Walckenaer (Araneae: Araneoidea) , 1996 .

[48]  A. Moore,et al.  Resilient silk captures prey in black widow cobwebs , 2006 .

[49]  P. Muehlig,et al.  Glycoproteins and skin-core structure in Nephila clavipes spider silk observed by light and electron microscopy. , 2006, Scanning.

[50]  W. Eberhard Substitution of silk stabilimenta for egg sacs by Allocyclosa bifurca (Araneae: Araneidae) suggests that silk stabilimenta function as camouflage devices , 2003 .

[51]  T. Miyashita Factors affecting the difference in foraging success in three co‐existing Cyclosa Spiders , 1997 .

[52]  D. Ginzinger,et al.  Silk Properties Determined by Gland-Specific Expression of a Spider Fibroin Gene Family , 1996, Science.

[53]  Todd A Blackledge,et al.  Biomechanical variation of silk links spinning plasticity to spider web function. , 2009, Zoology.

[54]  I. Agnarsson Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae) , 2004 .

[55]  F Vollrath,et al.  Structure and function of the silk production pathway in the spider Nephila edulis. , 1999, International journal of biological macromolecules.

[56]  Y. Lubin,et al.  Webs of Miagrammopes (Araneae: Uloboridae) in the Neotropics , 1978 .

[57]  Fritz Vollrath,et al.  Web construction patterns in a range of orb weaving spiders (Araneae) , 2013 .

[58]  M. H. Robinson Predatory Behavior of Argiope argentata (Fabricius) , 1969 .

[59]  B. Opell,et al.  van der Waals and hygroscopic forces of adhesion generated by spider capture threads , 2003, Journal of Experimental Biology.

[60]  K. Prestwich,et al.  The energetics of web-building in spiders , 1977 .

[61]  Matthew A. Collin,et al.  Blueprint for a High-Performance Biomaterial: Full-Length Spider Dragline Silk Genes , 2007, PloS one.

[62]  M. Kuntner Phylogenetic systematics of the Gondwanan nephilid spider lineage Clitaetrinae (Araneae, Nephilidae) , 2006 .

[63]  Takeshi Watanabe,et al.  Web tuning of an orb-web spider, Octonoba sybotides, regulates prey-catching behaviour , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[64]  Samuel Venner,et al.  Spider webs designed for rare but life-saving catches , 2005, Proceedings of the Royal Society B: Biological Sciences.

[65]  A. Shinkai,et al.  The web structure and the predatory behavior of Wendilgarda sp. (Araneae: Theridiosomatidae) , 1997 .

[66]  W. Eberhard THE WEB AND BUILDING BEHAVIOR O F SYNOTAXUS ECUADORENSIS (ARANEAE, SYNOTAXIDAE) , 1995 .

[67]  Leticia Avilés,et al.  The Evolution of Social Behavior in Insects and Arachnids: Causes and consequences of cooperation and permanent-sociality in spiders , 1997 .

[68]  S. Venner,et al.  Estimation of the Web’s Capture Thread Length in Orb-Weaving Spiders: Determining the Most Efficient Formula , 2001 .

[69]  N. Troje,et al.  Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera , 1994, Vision Research.

[70]  B. Opell,et al.  Redesigning spider webs: Stickiness, capture area and the evolution of modern orb-webs , 1999 .

[71]  M. L. Hendricks,et al.  The role of granules within viscous capture threads of orb-weaving spiders , 2010, Journal of Experimental Biology.

[72]  J. Coddington ORB WEBS IN “NON‐ORB WEAVING” OGRE‐FACED SPIDERS (ARANEAE: DINOPIDAE): A QUESTION OF GENEALOGY , 1986, Cladistics : the international journal of the Willi Hennig Society.

[73]  B. Opell HOW SPIDER ANATOMY AND THREAD CONFIGURATION SHAPE THE STICKINESS OF CRIBELLAR PREY CAPTURE THREADS , 2002 .

[74]  David B. Peakall,et al.  The Fate of the Intact Orb Web of the Spider Araneus Diadematus Cl. 1) , 1964 .

[75]  S. Blamires Plasticity in extended phenotypes: orb web architectural responses to variations in prey parameters , 2010, Journal of Experimental Biology.

[76]  R. Lewis,et al.  Structure of a protein superfiber: spider dragline silk. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[77]  T. Blackledge,et al.  Do stabilimenta in orb webs attract prey or defend spiders , 1999 .

[78]  M. S. Alam,et al.  Mechanics in naturally compliant structures , 2007 .

[79]  H. Rundle,et al.  Ecological speciation: Ecological speciation , 2005 .

[80]  Gustavo Hormiga,et al.  Giant female or dwarf male spiders? , 1997, Nature.

[81]  W. Marcotte,et al.  Identification and characterization of multiple Spidroin 1 genes encoding major ampullate silk proteins in Nephila clavipes. , 2008, Insect molecular biology.

[82]  Olivier Dangles,et al.  Physical ecology of fluid flow sensing in arthropods. , 2010, Annual review of entomology.

[83]  Todd A Blackledge,et al.  Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775) , 2006, Journal of Experimental Biology.

[84]  J. Coddington The Monophyletic Origin of the Orb Web , 1986 .

[85]  N. Ayoub,et al.  Untangling spider silk evolution with spidroin terminal domains , 2010, BMC Evolutionary Biology.

[86]  B. Hausdorf Molecular phylogeny of araneomorph spiders , 1999 .

[87]  W. Eberhard Miniaturized orb-weaving spiders: behavioural precision is not limited by small size , 2007, Proceedings of the Royal Society B: Biological Sciences.

[88]  J. Coddington,et al.  SOCIALITY IN THERIDIID SPIDERS: REPEATED ORIGINS OF AN EVOLUTIONARY DEAD END , 2006, Evolution; international journal of organic evolution.

[89]  David L Kaplan,et al.  Silk-based biomaterials. , 2003, Biomaterials.

[90]  Ann L. Rypstra,et al.  Building a better insect trap; An experimental investigation of prey capture in a variety of spider webs , 2004, Oecologia.

[91]  John M Gosline,et al.  Consequences of forced silking. , 2004, Biomacromolecules.

[92]  John F Anderson Responses to Starvation in the Spiders Lycosa Lenta Hentz and Filistata Hibernalis (Hentz) , 1974 .

[93]  T. Eisner,et al.  Spider Web Protection Through Visual Advertisement: Role of the Stabilimentum , 1983, Science.

[94]  M. Herberstein,et al.  Spider webs: Evolution, diversity and plasticity , 2011 .

[95]  C. P. Sandoval,et al.  Plasticity in web design in the spider Parawixia bistriata : a response to variable prey type , 1994 .

[96]  R. Gillespie Predation through impalement of prey: The foraging behavior of Doryonychus raptor (Araneae: Tetragnathidae) , 1991 .

[97]  Habitat patch size and isolation as predictors of occupancy and number of argyrodine spider kleptoparasites in Nephila webs , 2011, Naturwissenschaften.

[98]  Daiqin Li,et al.  Why do orb-weaving spiders (Cyclosa ginnaga) decorate their webs with silk spirals and plant detritus? , 2010, Animal Behaviour.

[99]  Samuel Venner,et al.  Body-mass-dependent cost of web-building behavior in an orb weaving spider, Zygiella x-notata , 2003, Naturwissenschaften.

[100]  R. Greissl,et al.  Survival strategies of the crab spider Thomisus onustus Walckenaer 1806 (Chelicerata, Arachnida, Thomisidae) , 1989, Oecologia.

[101]  M. Rankin,et al.  VARIATION IN THE CHEMICAL COMPOSITION OF ORB WEBS BUILT BY THE SPIDER NEPHILA CLAVIPES (ARANEAE, TETRAGNATHIDAE) , 2001 .

[102]  R. Menzel,et al.  POLLINATORS' STRATEGIES IN FINDING FLOWERS , 1997 .

[103]  R. Gillespie Community Assembly Through Adaptive Radiation in Hawaiian Spiders , 2004, Science.

[104]  A. Rypstra,et al.  EFFECTS OF PREY SUPPLEMENTATION ON SURVIVA L AND WEB SITE TENACITY OF ARGIOPE TRIFASCIAT A (ARANEAE, ARANEIDAE) : A FIELD EXPERIMEN T , 1997 .

[105]  K. Dittmar,et al.  A MaSp2-like gene found in the Amazon mygalomorph spider Avicularia juruensis. , 2010, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[106]  I. Agnarsson The phylogenetic placement and circumscription of the genus Synotaxus (Araneae:Synotaxidae), a new species from Guyana, and notes on theridioid phylogeny , 2003 .

[107]  A. Falick,et al.  Pyriform Spidroin 1, a Novel Member of the Silk Gene Family That Anchors Dragline Silk Fibers in Attachment Discs of the Black Widow Spider, Latrodectus hesperus* , 2009, The Journal of Biological Chemistry.

[108]  Prey attraction as a possible function of discoid stabilimenta of juvenile orb-spinning spiders , 2004, Animal Behaviour.

[109]  R. Lewis,et al.  Extreme Diversity, Conservation, and Convergence of Spider Silk Fibroin Sequences , 2001, Science.

[110]  C. Craig Spiderwebs and silk : tracing evolution from molecules to genes to phenotypes , 2003 .

[111]  H. W. Levi,et al.  Systematics and Evolution of Spiders (Araneae) , 1991 .

[112]  Jen-Pan Huang,et al.  Nocturnal hunting of a brightly coloured sit-and-wait predator , 2007, Animal Behaviour.

[113]  M. S. Alam,et al.  Damage Tolerance in Naturally Compliant Structures , 2005 .

[114]  M. Herberstein Foraging behaviour in orb-web spiders (Araneidae): do web decorations increase prey capture success in Argiope keyserlingi Karsch, 1878? , 2000 .

[115]  Samuel Zschokke,et al.  Untangling the Tangle-Web: Web Construction Behavior of the Comb-Footed Spider Steatoda triangulosa and Comments on Phylogenetic Implications (Araneae: Theridiidae) , 2002, Journal of Insect Behavior.

[116]  C. Craig,et al.  Evolution of arthropod silks. , 1997, Annual review of entomology.

[117]  B. Opell,et al.  Evolution of adhesive mechanisms in cribellar spider prey capture thread: evidence for van der Waals and hygroscopic forces , 2002 .

[118]  D. Porter,et al.  Proline and processing of spider silks. , 2008, Biomacromolecules.

[119]  J. Endler Some general comments on the evolution and design of animal communication systems. , 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[120]  Kensuke Nakata,et al.  Feeding experience affects web relocation and investment in web threads in an orb-web spider, Cyclosa argenteoalba , 1999, Animal Behaviour.

[121]  J. Coddington,et al.  Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea) , 1998 .

[122]  Barbara Robinson,et al.  Evolution beyond the orb web: the web of the araneid spider Pasilobus sp., its structure, operation and construction , 1975 .

[123]  M. Herberstein,et al.  Web decorations and foraging success in 'Araneus' eburnus (Araneae: Araneidae) , 2004 .

[124]  M. Rankin,et al.  Nutritional requirements for web synthesis in the tetragnathid spider Nephila clavipes , 1999 .

[125]  H. Peters Studien am netz der kreuzspinne (Aranea Diadema L.) , 1937, Zeitschrift für Morphologie und Ökologie der Tiere.

[126]  M. Elgar,et al.  Molting interferes with web decorating behavior in Argiope keyserlingi (Araneae, Araneidae) , 2008 .

[127]  Y. Hsia,et al.  Synthetic spider silk fibers spun from Pyriform Spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs. , 2010, Biomacromolecules.

[128]  Sean P Kelly,et al.  Spider orb webs rely on radial threads to absorb prey kinetic energy , 2012, Journal of The Royal Society Interface.

[129]  W. M. Masters,et al.  Vibrations in the orbwebs of Nuctenea sclopetaria (Araneidae) , 1984, Behavioral Ecology and Sociobiology.

[130]  Fritz Vollrath,et al.  Liquid crystals and flow elongation in a spider's silk production line , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[131]  M. H. Robinson,et al.  Invertebrate Behavior. (Book Reviews: Comparative Studies of the Courtship and Mating Behavior of Tropical Araneid Spiders) , 1980 .

[132]  M. H. Robinson,et al.  The structure, possible function and origin of the remarkable ladder-web built by a New Guinea orb-web spider (Araneae: Araneidae) , 1972 .

[133]  S. Blamires,et al.  Prey type, vibrations and handling interactively influence spider silk expression , 2010, Journal of Experimental Biology.

[134]  F. Vollrath Kleptobiotic interactions in invertebrates , 1984 .

[135]  K. Brown Foraging ecology and niche partitioning in orb-weaving spiders , 1981, Oecologia.

[136]  A. M. Heiling Why do nocturnal orb-web spiders (Araneidae) search for light? , 1999, Behavioral Ecology and Sociobiology.

[137]  S. Gorb,et al.  Gorb et al. reply , 2009, Nature.

[138]  E. N. Vanderhoff,et al.  Do the Color and Pattern of Micrathena gracilis (Araneae: Araneidae) Attract Prey? Examination of the Prey Attraction Hypothesis and Crypsis , 2008, Journal of Insect Behavior.

[139]  A. Lang,et al.  Bt maize pollen exposure and impact on the garden spider, Araneus diadematus , 2006 .

[140]  G. Uetz,et al.  Kleptoparasites: a twofold cost of group living for the colonial spider, Metepeira incrassata (Araneae, Araneidae) , 2009, Behavioral Ecology and Sociobiology.

[141]  T. Blackledge,et al.  The evolution of cryptic spider silk: a behavioral test , 2000 .

[142]  R. Elwood,et al.  Relocation, reproduction and remaining alive in the orb‐web spider , 2009 .

[143]  G. Uetz The “ricochet effect” and prey capture in colonial spiders , 1989, Oecologia.

[144]  H. Peters Ultrastructure of orb spiders' gluey capture threads , 1995, Naturwissenschaften.

[145]  Energy costs of the predation strategy of the web-spinning spider Lepthyphantes zimmermanni bertkau (Linyphiidae) , 1977, Oecologia.

[146]  W. Fairbrother,et al.  Compounds in the droplets of the orb spider's viscid spiral , 1990, Nature.

[147]  Jonathan A Coddington,et al.  Reconstructing web evolution and spider diversification in the molecular era , 2009, Proceedings of the National Academy of Sciences.

[148]  T. Caraco,et al.  Risk‐Sensitivity: Foraging Mode in an Ambush Predator , 1986 .

[149]  C. Krebs,et al.  Measuring the ghost of competition: Insights from density-dependent habitat selection on the co-existence and dynamics of lemmings , 2000 .

[150]  Kai-Jung Chi,et al.  The effects of wind on trap structural and material properties of a sit-and-wait predator , 2009 .

[151]  S. Altizer Migratory behaviour and host-parasite co-evolution in natural populations of monarch butterflies infected with a protozoan parasite , 2001 .

[152]  J. Gosline,et al.  The mechanical design of spider silks: from fibroin sequence to mechanical function. , 1999, The Journal of experimental biology.

[153]  W. Eberhard Trolling for water striders: active searching for prey and the evolution of reduced webs in the spider Wendilgarda sp. (Araneae, Theridiosomatidae) , 2001 .

[154]  M. Bruce,et al.  Silk decorations: controversy and consensus , 2006 .

[155]  M. Herberstein,et al.  EVALUATION OF FORMULAE TO ESTIMATE THE CAPTURE AREA AND MESH HEIGHT OF ORB WEBS (ARANEOIDEA, ARANEAE) , 2000 .

[156]  M. Traw A REVISION OF THE NEOTROPICAL ORB-WEAVING SPIDER GENUS SCOLODERUS (ARANEAE: ARANEIDAE) , 1995 .

[157]  Fritz Vollrath,et al.  Web spider's dilemma: a risky move or site dependent growth , 1985, Oecologia.

[158]  William G. Eberhard,et al.  Early stages of orb construction by Philoponella vicina, Leucauge mariana, and Nephila clavipes (Araneae, Uloboridae and Tetragnathidae), and their phylogenetic implications , 1990 .

[159]  T. Miyashita,et al.  Does individual internal state affect the presence of a barrier web in Argiope bruennichii (Araneae: Araneidae)? , 2005, Journal of Ethology.

[160]  M. Théry,et al.  The multiple disguises of spiders: web colour and decorations, body colour and movement , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[161]  S. Riechert,et al.  Spiders as Biological Control Agents , 1984 .

[162]  Anna Rising,et al.  N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. , 2006, Biomacromolecules.

[163]  Todd A. Blackledge,et al.  Variation in the material properties of spider dragline silk across species , 2006 .

[164]  J. Bond,et al.  The effects of capture spiral composition and orb-web orientation on prey interception. , 2006, Zoology.

[165]  B. Opell Functional Similarities of Spider Webs with Diverse Architectures , 1996, The American Naturalist.

[166]  Fritz Vollrath,et al.  The contribution of atmospheric water vapour to the formation and efficiency of a spider’s capture web , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[167]  D. Hochuli,et al.  Prey protein influences growth and decoration building in the orb web spider Argiope keyserlingi , 2009 .

[168]  M. Elgar Experimental Evidence of a Mutualistic Association between Two Web-Building Spiders , 1994 .

[169]  Chris Gaskett,et al.  Is optimal foraging a realistic expectation in orb‐web spiders? , 2009 .

[170]  B. Opell,et al.  Persistent stickiness of viscous capture threads produced by araneoid orb-weaving spiders. , 2007, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[171]  Kensuke Nakata Prey detection without successful capture affects spider’s orb-web building behaviour , 2007, Naturwissenschaften.

[172]  M. H. Robinson,et al.  THE STABILIMENTUM OF THE ORB WEB SPIDER, ARGIOPE ARGENTATA: AN IMPROBABLE DEFENCE AGAINST PREDATORS , 1970, Canadian Entomologist.

[173]  S. Tang,et al.  New internal structure of spider dragline silk revealed by atomic force microscopy. , 1994, Biophysical journal.

[174]  N. Ayoub,et al.  Silk gene transcripts in the developing tubuliform glands of the Western black widow, Latrodectus hesperus , 2010 .

[175]  Todd A. Blackledge,et al.  Are three-dimensional spider webs defensive adaptations? , 2002 .

[176]  T. Blackledge,et al.  Mesh width influences prey retention in spider orb webs , 2006 .

[177]  S. Via,et al.  Sympatric speciation in animals: the ugly duckling grows up. , 2001, Trends in ecology & evolution.

[178]  M. Townley,et al.  Moult-related changes in ampullate silk gland morphology and usage in the araneid spider Araneus cavaticus. , 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[179]  Anna Rising,et al.  Self-assembly of spider silk proteins is controlled by a pH-sensitive relay , 2010, Nature.

[180]  W. Eberhard Possible functional significance of spigot placement on the spinnerets of spiders , 2010 .

[181]  J. Coddington,et al.  Discovery of the Largest Orbweaving Spider Species: The Evolution of Gigantism in Nephila , 2009, PloS one.

[182]  P. D. Smallwood Web‐Site Tenure in the Long‐Jawed Spider: Is It Risk‐Sensitive Foraging, or Conspecific Interactions? , 1993 .

[183]  N. Pierce,et al.  Evidence for diet effects on the composition of silk proteins produced by spiders. , 2000, Molecular biology and evolution.

[184]  J. Spagna,et al.  More data, fewer shifts: molecular insights into the evolution of the spinning apparatus in non-orb-weaving spiders. , 2008, Molecular phylogenetics and evolution.

[185]  Joshua S Madin,et al.  High-performance spider webs: integrating biomechanics, ecology and behaviour , 2011, Journal of The Royal Society Interface.

[186]  F. Vollrath,et al.  The Role of Behavior in the Evolution of Spiders, Silks, and Webs , 2007 .

[187]  M. Elices,et al.  The variability and interdependence of spider drag line tensile properties , 2002 .

[188]  W. Eberhard Physical properties of sticky spirals and their connections: sliding connections in orb webs , 1976 .

[189]  T. Blackledge Signal conflict in spider webs driven by predators and prey , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[190]  Frische,et al.  Elongate cavities and skin–core structure in Nephila spider silk observed by electron microscopy , 1998 .

[191]  T. Eisner,et al.  Adhesiveness of Spider Silk , 1964, Science.

[192]  G. Plaza,et al.  The effect of spinning forces on spider silk properties , 2005, Journal of Experimental Biology.

[193]  T. Blackledge,et al.  The common house spider alters the material and mechanical properties of cobweb silk in response to different prey. , 2008, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[194]  T. Blackledge,et al.  SILK MEDIATED DEFENSE BY AN ORB WEB SPIDER AGAINST PREDATORY MUD-DAUBER WASPS , 2001 .

[195]  Andrew T. Sensenig,et al.  Behavioural and biomaterial coevolution in spider orb webs , 2010, Journal of evolutionary biology.

[196]  D. Peakall,et al.  Conservation of web proteins in the spider, Araneus diadematus. , 1971, The Journal of experimental zoology.

[197]  Daiqin Li,et al.  Stabilimenta attract unwelcome predators to orb–webs , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[198]  G. Uetz,et al.  Sexual selection, male morphology, and the efficacy of courtship signalling in two wolf spiders (Araneae: Lycosidae) , 1996, Behavioral Ecology and Sociobiology.

[199]  C. Neefus,et al.  Changes in composition of spider orb web sticky droplets with starvation and web removal, and synthesis of sticky droplet compounds , 2006, Journal of Experimental Biology.

[200]  G. V. Guinea,et al.  Stretching of supercontracted fibers: a link between spinning and the variability of spider silk , 2005, Journal of Experimental Biology.

[201]  S. Benjamin,et al.  Fine structure of sheet-webs of Linyphia triangularis (Clerck) and Microlinyphia pusilla (Sundevall), with remarks on the presence of viscid silk , 2002 .

[202]  K. Haynes,et al.  Aggressive chemical mimicry of moth pheromones by a bolas spider: how does this specialist predator attract more than one species of prey? , 2002, CHEMOECOLOGY.

[203]  C. Viney,et al.  Spider (Araneus diadematus) cocoon silk: a case of non-periodic lattice crystals with a twist? , 1999, International journal of biological macromolecules.

[204]  L. Van Langenhove,et al.  MODELING OF THE STRESS-STRAIN BEHAVIOR OF EGG SAC SILK OF THE SPIDER ARANEUS DIADEMATUS , 2005 .

[205]  R. Matsumoto “Veils” Against Predators: Modified Web Structure of a Host Spider Induced by an Ichneumonid Parasitoid, Brachyzapus nikkoensis (Uchida) (Hymenoptera) , 2008, Journal of Insect Behavior.

[206]  Chad M. Eliason,et al.  Functionally independent components of prey capture are architecturally constrained in spider orb webs , 2007, Biology Letters.

[207]  Kelly V. Ruggles,et al.  The complexity of site quality: multiple factors affect web tenure in an orb-web spider , 2010, Animal Behaviour.

[208]  Todd A. Blackledge,et al.  A Review on Spider Silk Adhesion , 2011 .

[209]  Adam P. Summers,et al.  Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. , 2005, Zoology.

[210]  Todd A Blackledge,et al.  Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[211]  M. Elgar,et al.  Web damage and feeding experience influence web site tenacity in the orb-web spider Argiope keyserlingi Karsch , 2000, Animal Behaviour.

[212]  Jeremy A. Miller,et al.  Phylogeny of entelegyne spiders: affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae). , 2010, Molecular phylogenetics and evolution.

[213]  Takeshi Watanabe Prey attraction as a possible function of the silk decoration of the uloborid spider Octonoba sybotides , 1999 .

[214]  Ingi Agnarsson,et al.  Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider , 2010, PloS one.

[215]  H. Japyassú,et al.  Predatory plasticity in Nephilengys cruentata (Araneae: Tetragnathidae): Relevance for phylogeny reconstruction , 2002 .

[216]  T. Blackledge,et al.  Evolution of supercontraction in spider silk: structure–function relationship from tarantulas to orb-weavers , 2010, Journal of Experimental Biology.

[217]  F. Grosse,et al.  Conserved C-termini of Spidroins are secreted by the major ampullate glands and retained in the silk thread. , 2004, Biomacromolecules.

[218]  W. Nentwig Why do only certain insects escape from a spider's web? , 1982, Oecologia.

[219]  S. Palumbi,et al.  Multiple origins of a spider radiation in Hawaii. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[220]  F. Vollrath,et al.  Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects. , 2004, Biomacromolecules.

[221]  F. Grosse,et al.  Environmental conditions impinge on dragline silk protein composition , 2008, Insect molecular biology.

[222]  J. Bond,et al.  EXPLORING FUNCTIONAL ASSOCIATIONS BETWEEN SPIDER CRIBELLA AND CALAMISTRA , 2000 .

[223]  L. Hrubá,et al.  Egg sac silk of Theridiosoma gemmosum (Araneae: Theridiosomatidae) , 2009, Journal of morphology.

[224]  M. Kuntner,et al.  Orb web features as taxonomic characters in Zygiella s.l. (Araneae: Araneidae) , 2010 .

[225]  Kensuke Nakata,et al.  Upside-down spiders build upside-down orb webs: web asymmetry, spider orientation and running speed in Cyclosa , 2010, Proceedings of the Royal Society B: Biological Sciences.

[226]  Hans M. Peters,et al.  Functional organization of the spinning apparatus of Cyrtophora citricola with regard to the evolution of the web (Araneae, Araneidae) , 1993, Zoomorphology.

[227]  Fritz Vollrath,et al.  Modulation of the mechanical properties of spider silk by coating with water , 1989, Nature.

[228]  G. Hormiga,et al.  Higher‐level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence , 2009, Cladistics : the international journal of the Willi Hennig Society.

[229]  W. Eberhard Stabilimenta on the webs of Uloborus diversus (Araneae: Uloboridae) and other spiders , 2010 .

[230]  K. Yeargan BIOLOGY OF BOLAS SPIDERS , 1994 .

[231]  Todd A Blackledge,et al.  Spider capture silk: performance implications of variation in an exceptional biomaterial. , 2007, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[232]  Douglas W. Yu,et al.  Function of bright coloration in the wasp spider Argiope bruennichi (Araneae: Araneidae) , 2008, Proceedings of the Royal Society B: Biological Sciences.

[233]  J. Sanders,et al.  The elasticity of spiders' webs is due to water-induced mobility at a molecular level , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[234]  M. H. Robinson,et al.  Attacks on Large or Heavily Defended Prey by Tropical Salticid Spiders , 1977 .

[235]  Fritz Vollrath,et al.  Characterization of the protein components of Nephila clavipes dragline silk. , 2005, Biochemistry.

[236]  J. Tumlinson,et al.  Chemical Mimicry: Bolas Spiders Emit Components of Moth Prey Species Sex Pheromones , 1987, Science.

[237]  Kensuke Nakata,et al.  To be or not to be conspicuous: the effects of prey availability and predator risk on spider's web decoration building , 2009, Animal Behaviour.

[238]  W. Eberhard Araneus expletus (Araneae, Araneidae): another stabilimentum that does not function to attract prey , 2008 .

[239]  M. Elices,et al.  Active control of spider silk strength: comparison of drag line spun on vertical and horizontal surfaces , 2002 .

[240]  Gilbert Barrantes,et al.  Construction and function of the web of Tidarren sisyphoides (Araneae: Theridiidae) , 2009 .

[241]  David A. Bohan,et al.  Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. , 2005, Bulletin of entomological research.

[242]  Shigeyoshi Osaki,et al.  Spider silk as mechanical lifeline , 1996, Nature.

[243]  J. Bond,et al.  TESTING ADAPTIVE RADIATION AND KEY INNOVATION HYPOTHESES IN SPIDERS , 1998, Evolution; international journal of organic evolution.

[244]  M. L. Hendricks,et al.  The adhesive delivery system of viscous capture threads spun by orb-weaving spiders , 2009, Journal of Experimental Biology.

[245]  L. S. Rayor Attack strategies of predatory wasps (Hymenoptera: Pompilidae; Sphecidae) on colonial orb web-building spiders (Araneidae: Metepeira incrassata) , 1996 .

[246]  F. G. Barth,et al.  Vibrations in the orb web of the spider Nephila clavipes: cues for discrimination and orientation , 1996, Journal of Comparative Physiology A.

[247]  C. Craig,et al.  SIGNAL POLYMORPHISM IN THE WEB-DECORATING SPIDER ARGIOPE ARGENTATA IS CORRELATED WITH REDUCED SURVIVORSHIP AND THE PRESENCE OF STINGLESS BEES, ITS PRIMARY PREY , 2001, Evolution; international journal of organic evolution.

[248]  W. Bristowe The comity of spiders , 1968 .

[249]  N. Ayoub,et al.  Multiple recombining loci encode MaSp1, the primary constituent of dragline silk, in widow spiders (Latrodectus: Theridiidae). , 2008, Molecular biology and evolution.

[250]  D. Rao Experimental Evidence for the Amelioration of Shadow Competition in an Orb‐Web Spider Through the ‘Ricochet’ Effect , 2009 .

[251]  T. Mommsen,et al.  Pollen Feeding in an Orb-Weaving Spider , 1984, Science.

[252]  D. Walter,et al.  Kleptoparasites or commensals? Effects of Argyrodes antipodianus (Araneae: Theridiidae) on Nephila plumipes (Araneae: Tetragnathidae) , 1997, Oecologia.

[253]  J. Coddington,et al.  Fecundity increase supports adaptive radiation hypothesis in spider web evolution , 2009, Communicative & integrative biology.

[254]  François Charpillet,et al.  Dynamic optimization over infinite-time horizon: web-building strategy in an orb-weaving spider as a case study. , 2006, Journal of theoretical biology.

[255]  F. Vollrath,et al.  Mechanics of silk produced by loaded spiders , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[256]  Samuel Venner,et al.  Web-building behaviour in the orb-weaving spider Zygiella x-notata: influence of experience , 2000, Animal Behaviour.

[257]  F. Samu,et al.  Spider orb web as bioassay for pesticide side effects , 1992 .

[258]  G. Plaza,et al.  Self-tightening of spider silk fibers induced by moisture , 2003 .

[259]  I. Tso Behavioral Response of Argiope trifasciata to Recent Foraging Gain: A Manipulative Study , 1999 .

[260]  S. Naftilan,et al.  Transmission of vibrations in funnel and sheet spider webs. , 1999, International journal of biological macromolecules.

[261]  Samuel Zschokke,et al.  Webs of theridiid spiders: construction, structure and evolution , 2003 .

[262]  L. Van Langenhove,et al.  The Tensile Properties of Cocoon Silk of the Spider Araneus diadematus , 2006 .

[263]  R. Gillespie,et al.  ESTIMATION OF CAPTURE AREAS OF SPIDER ORB WEBS IN RELATION TO ASYMMETRY , 2002 .

[264]  Todd A. Blackledge,et al.  Condition-dependent spider web architecture in the western black widow, Latrodectus hesperus , 2007, Animal Behaviour.

[265]  M B Hinman,et al.  Synthetic spider silk: a modular fiber. , 2000, Trends in biotechnology.

[266]  J. Coddington,et al.  A phylogenetic analysis of the orb-weaving spider family Araneidae (Arachnida, Araneae) , 1997 .

[267]  Z. Shao,et al.  Elasticity of spider silks. , 2008, Biomacromolecules.

[268]  R. Wehner Spatial Vision in Arthropods , 1981 .

[269]  James M. Pflug,et al.  From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. , 2004, Molecular phylogenetics and evolution.

[270]  Todd A Blackledge,et al.  Unraveling the mechanical properties of composite silk threads spun by cribellate orb-weaving spiders , 2006, Journal of Experimental Biology.

[271]  L. Higgins Developmental changes in barrier web structure under different levels of predation risk inNephila clavipes (Araneae: Tetragnathidae) , 1992, Journal of Insect Behavior.

[272]  G. Hormiga A Revision and Cladistic Analysis of the Spider Family Pimoidae (Araneoidea: Araneae) , 1994 .

[273]  Karin Schütt The limits of the Araneoidea (Arachnida : Araneae) , 2000 .

[274]  M. L. Richardson,et al.  Partitioning of Niches Among Four Species of Orb-Weaving Spiders in a Grassland Habitat , 2009, Environmental entomology.

[275]  B. Meier,et al.  Local Structure in Spider Dragline Silk Investigated by Two-Dimensional Spin-Diffusion Nuclear Magnetic Resonance† , 1996 .

[276]  J. Gosline,et al.  The role of proline in the elastic mechanism of hydrated spider silks , 2008, Journal of Experimental Biology.

[277]  M. Elgar,et al.  Foraging strategies and feeding regimes: Web and decoration investment in Argiope keyserlingi Karsch (Araneae: Araneidae) , 2000 .

[278]  J. Coddington,et al.  Web Manipulation and Two Stereotyped Attack Behaviors in the Ogre-Faced Spider Deinopis Spinosus Marx (Araneae, Deinopidae) , 1987 .

[279]  J. Harwood,et al.  Pollen interception by linyphiid spiders in a corn agroecosystem: implications for dietary diversification and risk-assessment , 2010, Arthropod-Plant Interactions.

[280]  H. Japyassú,et al.  From Complete Orb to Semi-Orb Webs: Developmental Transitions in the Web of Nephilengys Cruentata (Araneae: Tetragnathidae) , 1998 .

[281]  G. D. Bernard,et al.  INSECT ATTRACTION TO ULTRAVIOLET-REFLECTING SPIDER WEBS AND WEB DECORATIONS' , 1990 .

[282]  Michael G. Sehorn,et al.  Spidroin N-terminal Domain Promotes a pH-dependent Association of Silk Proteins during Self-assembly* , 2010, The Journal of Biological Chemistry.

[283]  A. Falick,et al.  Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus. , 2005, Biochemistry.

[284]  M. Hauber Web decorations and alternative foraging tactics of the spider Argiope appensa , 1998 .

[285]  P N Witt,et al.  Experience and the orb web. , 1970, Developmental psychobiology.

[286]  M. L. Hendricks,et al.  Adhesive recruitment by the viscous capture threads of araneoid orb-weaving spiders , 2007, Journal of Experimental Biology.

[287]  M. H. Robinson,et al.  The biology of some Argiope species from New Guinea: predatory behaviour and stabilimentum construction (Araneae: Araneidae) , 1974 .

[288]  M. Kuntner,et al.  A monograph of Nephilengys, the pantropical ‘hermit spiders’ (Araneae, Nephilidae, Nephilinae) , 2007 .

[289]  Mark W. Denny,et al.  THE PHYSICAL PROPERTIES OF SPIDER'S SILK AND THEIR ROLE IN THE DESIGN OF ORB-WEBS , 1976 .

[290]  Jeremy A. Miller Review of Erigonine spider genera in the Neotropics (Araneae: Linyphiidae, Erigoninae) , 2007 .

[291]  B. Opell,et al.  Economics of spider orb-webs: the benefits of producing adhesive capture thread and of recycling silk , 1998 .

[292]  W. W. Adams,et al.  The color of dragline silk produced in captivity by the spider Nephila clavipes , 2004 .

[293]  R. Lewis,et al.  Spider web glue: two proteins expressed from opposite strands of the same DNA sequence. , 2009, Biomacromolecules.

[294]  Ingi Agnarsson,et al.  How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk , 2009, Journal of Experimental Biology.

[295]  M. Rodríguez-Gironés,et al.  Silk elasticity as a potential constraint on spider body size. , 2010, Journal of theoretical biology.

[296]  W. Eberhard,et al.  BEHAVIORAL CHARACTERS FOR THE HIGHER CLASSIFICATION OF ORB‐WEAVING SPIDERS , 1982, Evolution; international journal of organic evolution.

[297]  M. Elgar,et al.  The functional significance of silk decorations of orb‐web spiders: a critical review of the empirical evidence , 2000, Biological reviews of the Cambridge Philosophical Society.

[298]  W. Nentwig Social spiders catch larger prey: a study of Anelosimus eximius (Araneae: Theridiidae) , 1985, Behavioral Ecology and Sociobiology.

[299]  A. Kerr Low Frequency of Stabilimenta in Orb Webs of Argiope appensa (Araneae: Araneidae) from Guam: An Indirect Effect of an Introduced Avian Predator , 1993 .

[300]  I. Agnarsson SHARING A WEB—ON THE RELATION OF SOCIALITY AND KLEPTOPARASITISM IN THERIDIID SPIDERS (THERIDIIDAE, ARANEAE) , 2002 .

[301]  William G. Eberhard,et al.  Function and Phylogeny of Spider Webs , 1990 .

[302]  A. J. Moffat,et al.  A functional explanation of top-bottom asymmetry in vertical orbwebs , 1983, Animal Behaviour.

[303]  R. Lewis,et al.  Molecular architecture and evolution of a modular spider silk protein gene. , 2000, Science.

[304]  B. Opell POST-HATCHING DEVELOPMENT AND WEB PRODUCTION O F HYPTIOTES CA VATUS (HENTZ) (ARANEAE, ULOBORIDAE ) , 1982 .

[305]  M. H. Robinson,et al.  The Predatory Behavior of the Golden-Web Spider Nephila clavipes (Araneae: Araneidae) , 1971 .

[306]  B. Opell,et al.  The material cost and stickiness of capture threads and the evolution of orb‐weaving spiders , 1997 .

[307]  L. Higgins QUANTITATIVE SHIFTS IN ORB-WEB INVESTMENT DURING DEVELOPMENT IN NEPHILA CLAVIPES (ARANEAE, NEPHILIDAE) , 2006 .

[308]  K. Jörger,et al.  WEB CONSTRUCTION AND MODIFICATION BY ACHAEARANEA TESSELATA (ARANEAE, THERIDIIDAE) , 2006 .

[309]  G. Barrantes,et al.  Natural History And Larval Behavior Of The Parasitoid Zatypota Petronae (hymenoptera: Ichneumonidae) , 2007 .

[310]  M. Kuntner A revision of Herennia (Araneae : Nephilidae : Nephilinae), the Australasian 'coin spiders' , 2005 .

[311]  Aaron M. T. Harmer,et al.  Elongated orb-webs of Australian ladder-web spiders (Araneidae: Telaprocera) and the significance of orb-web elongation , 2009, Journal of Ethology.

[312]  R. W. Work A Comparative Study of the Supercontraction of Major Ampullate Silk Fibers of Orb-Web-Building Spiders (Araneae) , 1981 .

[313]  William G. Eberhard,et al.  The web of Uloborus diversus (Araneae: Uloboridae) , 2009 .

[314]  M. Knight,et al.  Beta transition and stress-induced phase separation in the spinning of spider dragline silk. , 2000, International journal of biological macromolecules.

[315]  P. Prokop,et al.  Factors affecting the foraging success of the wasp-like spider Argiope bruennichi (Araneae): Role of web design , 2005 .

[316]  J. Gosline,et al.  Supercontraction stress in spider webs. , 2004, Biomacromolecules.

[317]  I. Tso,et al.  A risky defence by a spider using conspicuous decoys resembling itself in appearance , 2009, Animal Behaviour.

[318]  R. Jackson,et al.  The biology of New Zealand and Queensland pirate spiders (Araneae, Mimetidae): aggressive mimicry, araneophagy and prey specialization , 2009 .

[319]  Debra L. Lake,et al.  Spider webs are efficient collectors of agrochemical spray , 1992 .

[320]  R. Suter Cyclosa turbinata (Araneae, Araneidae): Prey discrimination via web-borne vibrations , 1978, Behavioral Ecology and Sociobiology.

[321]  P N Witt,et al.  The energy budget of an orb web-building spider. , 1976, Comparative biochemistry and physiology. A, Comparative physiology.

[322]  M. Kuntner,et al.  Phylogeny accurately predicts behaviour in Indian Ocean Clitaetra spiders (Araneae : Nephilidae) , 2009 .

[323]  W. Eberhard Breaking the mold: behavioral variation and evolutionary innovation in Wendilgarda spiders (Araneae Theridiosomatidae) , 2000 .

[324]  M. Elgar,et al.  Argiope bruennichi shows a drinking-like behaviour in web hub decorations (Araneae, Araneidae) , 2007, Journal of Ethology.

[325]  W. Eberhard,et al.  Vestiges of an orb-weaving ancestor? The “biogenetic law” and ontogenetic changes in the webs and building behavior of the black widow spider Latrodectus geometricus (Araneae Theridiidae) , 2008 .

[326]  David L. Kaplan,et al.  Mechanism of silk processing in insects and spiders , 2003, Nature.

[327]  D. Wise Spiders in Ecological Webs , 1993 .

[328]  M. Kuntner,et al.  Darwin's bark spider: giant prey in giant orb webs (Caerostris darwini, Araneae: Araneidae)? , 2011 .

[329]  I. Agnarsson SPIDER WEBS AS HABITAT PATCHES—THE DISTRIBUTION OF KLEPTOPARASITES (ARGYRODES, THERIDIIDAE) AMONG HOST WEBS (NEPHILA, TETRAGNATHIDAE) , 2003 .

[330]  A. Rypstra The effect of kleptoparasitism on prey consumption and web relocation in a Peruvian population of the spider Nephila clavipes , 1981 .

[331]  T. Blackledge Stabilimentum variation and foraging success in Argiope aurantia and Argiope trifasciata (Araneae: Araneidae) , 1998 .

[332]  Fritz Vollrath,et al.  Design Variability in Web Geometry of an Orb-Weaving Spider , 1997, Physiology & Behavior.

[333]  W. Eberhard UNDER THE INFLUENCE: WEBS AND BUILDING BEHAVIOR OF PLESIOMETA ARGYRA (ARANEAE, TETRAGNATHIDAE) WHEN PARASITIZED BY HYMENOEPIMECIS ARGYRAPHAGA (HYMENOPTERA, ICHNEUMONIDAE) , 2001 .

[334]  J. Coddington,et al.  The phylogenetic basis of sexual size dimorphism in orb-weaving spiders (Araneae, Orbiculariae). , 2000, Systematic biology.

[335]  R. Lewis,et al.  Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non‐silk‐like “spacer regions” , 1998, Protein science : a publication of the Protein Society.

[336]  M. Elgar,et al.  DOES THE PRESENCE OF POTENTIAL PREY AFFECT WEB DESIGN IN ARGIOPE KEYSERLINGI (ARANEAE, ARANEIDAE)? , 2000 .

[337]  Thomas Hesselberg,et al.  The effects of neurotoxins on web-geometry and web-building behaviour in Araneus diadematus Cl. , 2004, Physiology & Behavior.

[338]  Wayne W. Tolbert Aerial Dispersal Behavior of Two Orb Weaving Spiders , 1977 .

[339]  H. W. Levi,et al.  Web forms and the phylogeny of theridiid spiders (Araneae: Theridiidae): Chaos from order , 2008 .

[340]  Philip T. Starks,et al.  The adaptive signifi cance of stabilimenta in orb-webs: a hierarchical approach , 2002 .

[341]  T. Lefèvre,et al.  Conformational and orientational transformation of silk proteins in the major ampullate gland of Nephila clavipes spiders. , 2008, Biomacromolecules.

[342]  G. Parker,et al.  Sexual dimorphism and distorted sex ratios in spiders , 1992, Nature.

[343]  S. Calmé,et al.  Insect attraction by webs of Nephila clavipes (Araneae: Nephilidae) , 2010 .

[344]  F. Vollrath,et al.  Glycoprotein glue beneath a spider web's aqueous coat , 1991, Naturwissenschaften.

[345]  A. Summers,et al.  SPIDER DRAGLINE SILK: CORRELATED AND MOSAIC EVOLUTION IN HIGH-PERFORMANCE BIOLOGICAL MATERIALS , 2006, Evolution; international journal of organic evolution.

[346]  M. Herberstein,et al.  The influence of predator cues on orb-web spider foraging behaviour , 2006 .

[347]  J. Bond,et al.  Changes in the mechanical properties of capture threads and the evolution of modern orb-weaving spiders , 2001 .

[348]  Fritz Vollrath,et al.  Structural engineering of an orb-spider's web , 1995, Nature.

[349]  B. Opell,et al.  The effect of insect surface features on the adhesion of viscous capture threads spun by orb-weaving spiders , 2007, Journal of Experimental Biology.

[350]  F. Grosse,et al.  Composition and Hierarchical Organisation of a Spider Silk , 2007, PloS one.

[351]  I. Agnarsson,et al.  Can a spider web be too sticky? Tensile mechanics constrains the evolution of capture spiral stickiness in orb‐weaving spiders , 2009 .

[352]  J. Vasconcellos‐Neto,et al.  Testing the Functions of Detritus Stabilimenta in Webs of Cyclosa fililineata and Cyclosa morretes (Araneae: Araneidae): Do They Attract Prey or Reduce the Risk of Predation? , 2005 .

[353]  H. Hansma,et al.  Molecular nanosprings in spider capture-silk threads , 2003, Nature materials.

[354]  M. H. Robinson Courtship and Mating Behavior in Spiders , 1982 .

[355]  W. Eberhard ‘Rectangular orb’ webs of Synotaxus (Araneae: Theridiidae) , 1977 .

[356]  R. Gillespie,et al.  Resource use within a community of Hawaiian spiders (Araneae: Tetragnathidae) , 2003 .

[357]  F. Vollrath,et al.  Nutrient balance affects foraging behaviour of a trap-building predator , 2009, Biology Letters.

[358]  H. Japyassú,et al.  Tenacity and silk investment of two orb weavers: considerations about diversification of the Araneoidea , 2008 .

[359]  Adam P Summers,et al.  Biomaterials: Silk-like secretion from tarantula feet , 2006, Nature.

[360]  Mark K. Stowe,et al.  OBSERVATIONS OF TWO NOCTURNAL ORBWEAVERS THA T BUILD SPECIALIZED WEBS : SCOLODER US CORDATU S AND WIXIA ECTYPA (ARANEAE :ARANEIDAE ) , 1978 .

[361]  M. Herberstein,et al.  Effect of abiotic factors on the foraging strategy of the orb-web spider Argiope keyserlingi (Araneae: Araneidae) , 2003 .

[362]  C. Craig,et al.  The Significance of Spider Size to the Diversification of Spider-Web Architectures and Spider Reproductive Modes , 1987, The American Naturalist.

[363]  K. Haynes,et al.  Aggressive Chemical Mimicry by the Bolas Spider Mastophora hutchinsoni: Identification and Quantification of a Major Prey's Sex Pheromone Components in the Spider's Volatile Emissions , 2000, Journal of Chemical Ecology.

[364]  Peter N. Witt,et al.  A Spider’s Web , 1968, Springer Berlin Heidelberg.

[365]  R. Lewis,et al.  Spider flagelliform silk: lessons in protein design, gene structure, and molecular evolution. , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[366]  E. Yang,et al.  Insect form vision as one potential shaping force of spider web decoration design , 2010, Journal of Experimental Biology.

[367]  J. Coddington Monophyletic origin of orb webs , 1982 .

[368]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[369]  F. Rind,et al.  Tarantulas cling to smooth vertical surfaces by secreting silk from their feet , 2011, Journal of Experimental Biology.

[370]  Fritz Vollrath,et al.  Design features of the orb web of the spider, Araneus diadematus , 1994 .

[371]  M. Herberstein,et al.  Taking it to extremes: what drives extreme web elongation in Australian ladder web spiders (Araneidae: Telaprocera maudae)? , 2009, Animal Behaviour.

[372]  A. Falick,et al.  Egg Case Protein-1 , 2005, Journal of Biological Chemistry.

[373]  V. Framenau,et al.  Telaprocera (Araneae : Araneidae), a new genus of Australian orb-web spiders with highly elongated webs , 2008 .

[374]  M B Hinman,et al.  Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. , 1992, The Journal of biological chemistry.

[375]  Jessica Siltberg-Liberles,et al.  Piriform spider silk sequences reveal unique repetitive elements. , 2010, Biomacromolecules.

[376]  C. Hayashi,et al.  Modular evolution of egg case silk genes across orb-weaving spider superfamilies. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[377]  J. Gosline,et al.  The scaling of safety factor in spider draglines , 2008, Journal of Experimental Biology.

[378]  M. Whitehouse,et al.  ARGYRODES: PHYLOGENY, SOCIALITY AND INTERSPECIFIC INTERACTIONS—A REPORT ON THE ARGYRODES SYMPOSIUM, BADPLAAS 2001 , 2002 .

[379]  Ryan Reza,et al.  Aciniform Spidroin, a Constituent of Egg Case Sacs and Wrapping Silk Fibers from the Black Widow Spider Latrodectus hesperus* , 2007, Journal of Biological Chemistry.

[380]  C. Hieber Orb‐web Orientation and Modification by the Spiders Araneus diadematus and Araneus gemmoides (Araneae: Araneidae) in Response to Wind and Light , 2010 .

[381]  Ingi Agnarsson,et al.  Web gigantism in Darwin's bark spider, a new species from Madagascar (Araneidae: Caerostris) , 2010 .

[382]  Daiqin Li,et al.  Mate plugging via genital mutilation in nephilid spiders: an evolutionary hypothesis , 2009 .

[383]  T. Blackledge Prey capture in orb weaving spiders: are we using the best metric? , 2011 .

[384]  D. Dimitrov,et al.  Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data , 2009, Cladistics : the international journal of the Willi Hennig Society.

[385]  J. Coddington,et al.  Phylogeny of extant nephilid orb‐weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies , 2008 .

[386]  Daiqin Li,et al.  Mass predicts web asymmetry in Nephila spiders , 2010, Naturwissenschaften.

[387]  J. Coddington The Genera of the Spider Family Theridiosomatidae , 1986 .

[388]  Daiqin Li,et al.  Stabilimentum variations in Argiope versicolor (Araneae: Araneidae) from Singapore , 2002 .

[389]  B. Opell,et al.  Adhesive compatibility of cribellar and viscous prey capture threads and its implication for the evolution of orb-weaving spiders. , 2011, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[390]  I. Agnarsson A revision of the New World eximius lineage of Anelosimus (Araneae, Theridiidae) and a phylogenetic analysis using worldwide exemplars , 2006 .

[391]  W. Eberhard BEHAVIORAL FLEXIBILITY IN ORB WEB CONSTRUCTION: EFFECTS OF SUPPLIES IN DIFFERENT SILK GLANDS AND SPIDER SIZE AND WEIGHT , 1988 .

[392]  R. Suter Ballooning in spiders: results of wind tunnel experiments , 1991 .

[393]  T. Lefèvre,et al.  Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders. , 2009, Biomacromolecules.

[394]  S. Benjamin,et al.  Homology, behaviour and spider webs: web construction behaviour of Linyphia hortensis and L. triangularis (Araneae: Linyphiidae) and its evolutionary significance , 2004, Journal of evolutionary biology.

[395]  CLIMBING TO REACH FEMALES: ROMEO SHOULD BE SMALL , 2002, Evolution; international journal of organic evolution.

[396]  Kensuke Nakata Attention focusing in a sit-and-wait forager: a spider controls its prey-detection ability in different web sectors by adjusting thread tension , 2010, Proceedings of the Royal Society B: Biological Sciences.

[397]  D. Zax,et al.  Variation of mechanical properties with amino acid content in the silk of Nephila clavipes. , 2004, Biomacromolecules.

[398]  Thomas Scheibel,et al.  A conserved spider silk domain acts as a molecular switch that controls fibre assembly , 2010, Nature.

[399]  Linden E. Higgins,et al.  Variation in foraging investment during the intermolt interval and before egg-laying in the spiderNephila clavipes (Araneae: Araneidae) , 1990, Journal of Insect Behavior.

[400]  R. Lewis,et al.  Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. , 2004, Molecular biology and evolution.

[401]  G. Hormiga,et al.  Phylogenetic placement of the Tasmanian spider Acrobleps hygrophilus (Araneae, Anapidae) with comments on the evolution of the capture web in Araneoidea , 2008 .

[402]  D. Hochuli,et al.  Why cross the web: decoration spectral properties and prey capture in an orb spider (Argiope keyserlingi) web , 2008 .

[403]  W. Eberhard The Natural History and Behavior of the Bolas Spider, Mastophora dizzydeani sp. n. (Araneae) , 1980 .

[404]  L. Forster,et al.  A derivative of the orb web and its evolutionary significance , 1985 .

[405]  B. J. Kaston THE EVOLUTION OF SPIDER WEBS , 1964 .

[406]  M. H. Robinson,et al.  Ecology and behavior of the giant wood spider Nephila maculata (Fabricius) in New Guinea , 1973 .

[407]  F Vollrath,et al.  Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual. , 1999, International journal of biological macromolecules.

[408]  D. Schluter Ecology and the origin of species. , 2001, Trends in ecology & evolution.

[409]  R. Hingston Protective Devices in Spiders' Snares, with a Description of seven New Species of Orb–Weaving Spiders , 2009 .

[410]  F. G. Barth,et al.  Vibratory communication in spiders: Adaptation and compromise at many levels , 1997 .

[411]  W. Eberhard Recovery of spiders from the effects of parasitic wasps: implications for fine-tuned mechanisms of manipulation , 2010, Animal Behaviour.

[412]  M. Weiss,et al.  Chemical Mediation of Prey Recognition by Spider‐Hunting Wasps , 2010 .

[413]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[414]  R. Buskirk,et al.  A trap-building predator exhibits different tactics for different aspects of foraging behaviour , 1992, Animal Behaviour.

[415]  G. D. Bernard,et al.  EVOLUTIONARY SHIFTS IN THE SPECTRAL PROPERTIES OF SPIDER SILKS , 1994, Evolution; international journal of organic evolution.

[416]  Takeshi Watanabe Effects of Web Design on the Prey Capture Efficiency of the Uloborid Spider Octonoba sybotides under Abundant and Limited Prey Conditions , 2001 .

[417]  T. Schoener,et al.  Stabilimenta characteristics of the spider Argiope argentata on small islands: support of the predator-defense hypothesis , 1992, Behavioral Ecology and Sociobiology.

[418]  R. Lewis,et al.  Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. , 1999, International journal of biological macromolecules.

[419]  J. Anderson,et al.  Metabolic rates of spiders. , 2015, Comparative biochemistry and physiology.

[420]  G. Plaza,et al.  Recovery in spider silk fibers , 2004 .

[421]  B. Opell Increased stickiness of prey capture threads accompanying web reduction in the spider family Uloboridae , 1994 .

[422]  W. Eberhard,et al.  Modification of Nephila clavipes (Araneae Nephilidae) webs induced by the parasitoids Hymenoepimecis bicolor and H. robertsae (Hymenoptera Ichneumonidae) , 2010 .

[423]  David T. Grubb,et al.  Fiber Morphology of Spider Silk: The Effects of Tensile Deformation , 1997 .

[424]  B. J. Marples,et al.  The spinnerets and epiandrous glands of spiders , 1967 .

[425]  Sean P Kelly,et al.  Damping capacity is evolutionarily conserved in the radial silk of orb-weaving spiders. , 2011, Zoology.

[426]  F. PÉREZ-MILES,et al.  Silk production from tarantula feet questioned , 2009, Nature.

[427]  I. Tso THE EFFECT OF FOOD AND SILK RESERVE MANIPULATION ON DECORATION-BUILDING OF ARGIOPE AETHEROIDES , 2004 .

[428]  C. Hayashi,et al.  Silk Genes Support the Single Origin of Orb Webs , 2006, Science.

[429]  E. de Mas,et al.  Introducing the refined gravity hypothesis of extreme sexual size dimorphism , 2010, BMC Evolutionary Biology.

[430]  William G. Eberhard,et al.  Spider manipulation by a wasp larva , 2000, Nature.

[431]  M. L. Hendricks,et al.  The contribution of axial fiber extensibility to the adhesion of viscous capture threads spun by orb-weaving spiders , 2008, Journal of Experimental Biology.

[432]  Manuel Elices,et al.  Mechanical behavior of silk during the evolution of orb-web spinning spiders. , 2009, Biomacromolecules.

[433]  G. Head SELECTION ON FECUNDITY AND VARIATION IN THE DEGREE OF SEXUAL SIZE DIMORPHISM AMONG SPIDER SPECIES (CLASS ARANEAE) , 1995, Evolution; international journal of organic evolution.

[434]  Todd A. Blackledge,et al.  Viscoelastic solids explain spider web stickiness. , 2010, Nature communications.

[435]  J. Coddington Spinneret Silk Spigot Morphology: Evidence for the Monophyly of Orbweaving Spiders, Cyrtophorinae (Araneidae), and the Group Theridiidae Plus Nesticidae , 1989 .

[436]  A. Falick,et al.  Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. , 2007, Biochemistry.

[437]  Todd A. Blackledge,et al.  Fine dining or fortress? Functional shifts in spider web architecture by the western black widow Latrodectus hesperus , 2008, Animal Behaviour.

[438]  Jin Zhai,et al.  Directional water collection on wetted spider silk , 2010, Nature.

[439]  F. Vollrath,et al.  Thread biomechanics in the two orb-weaving spiders Araneus diadematus(Araneae, Araneidae)and Uloborus walckenaerius(Araneae, Uloboridae) , 1995 .

[440]  F Vollrath,et al.  The effect of spinning conditions on the mechanics of a spider's dragline silk , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[441]  G. D. Bernard,et al.  Evolution of Predator-Prey Systems: Spider Foraging Plasticity in Response to the Visual Ecology of Prey , 1996, The American Naturalist.

[442]  P. Risch Quantitative analysis of orb web patterns in four species of spiders , 1977, Behavior genetics.

[443]  C. Craig,et al.  Colour and Pattern in Predator-Prey Interactions: The Bright Body Colours and Patterns of a Tropical Orb-Spinning Spider Attract Flower-Seeking Prey , 1994 .

[444]  Fritz Vollrath,et al.  Unfreezing the behaviour of two orb spiders , 1995, Physiology & Behavior.

[445]  Silk feeding as an alternative foraging tactic in a kleptoparasitic spider under seasonally changing environments , 2004 .

[446]  C. Craig Orb-web visibility: the influence of insect flight behaviour and visual physiology on the evolution of web designs within the Araneoidea , 1986, Animal Behaviour.

[447]  T. Krink,et al.  Optimal Area Use in Orb Webs of the Spider Araneus diadematus , 2000, Naturwissenschaften.

[448]  Carlos G. Valerio,et al.  Observations on the Web and Behavior of Wendilgarda Spiders (Araneae: Theridiosomatidae) , 1980 .

[449]  B. Opell The ability of spider cribellar prey capture thread to hold insects with different surface features , 1994 .

[450]  Hsuan-Chen Wu,et al.  Giant wood spider Nephila pilipes alters silk protein in response to prey variation , 2005, Journal of Experimental Biology.

[451]  John Prenter,et al.  SEXUAL SIZE DIMORPHISM AND REPRODUCTIVE INVESTMENT BY FEMALE SPIDERS: A COMPARATIVE ANALYSIS , 1999, Evolution; international journal of organic evolution.

[452]  U. Dieckmann,et al.  On the origin of species by sympatric speciation , 1999, Nature.

[453]  T. Miyashita,et al.  Extraordinary web and silk properties of Cyrtarachne (Araneae, Araneidae): a possible link between orb-webs and bolas , 2000 .