Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes.

To date, some of the highest performance photocathodes of a photoelectrochemical (PEC) cell have been shown with single-crystalline p-type InP wafers, exhibiting half-cell solar-to-hydrogen conversion efficiencies of over 14%. However, the high cost of single-crystalline InP wafers may present a challenge for future large-scale industrial deployment. Analogous to solar cells, a thin-film approach could address the cost challenges by utilizing the benefits of the InP material while decreasing the use of expensive materials and processes. Here, we demonstrate this approach, using the newly developed thin-film vapor-liquid-solid (TF-VLS) nonepitaxial growth method combined with an atomic-layer deposition protection process to create thin-film InP photocathodes with large grain size and high performance, in the first reported solar device configuration generated by materials grown with this technique. Current-voltage measurements show a photocurrent (29.4 mA/cm(2)) and onset potential (630 mV) approaching single-crystalline wafers and an overall power conversion efficiency of 11.6%, making TF-VLS InP a promising photocathode for scalable and efficient solar hydrogen generation.

[1]  E. W. Williams,et al.  Indium Phosphide I . A Photoluminescence Materials Study , 1973 .

[2]  A. Heller Hydrogen-Evolving Solar Cells , 1984, Science.

[3]  Zhibin Yu,et al.  Deterministic nucleation of InP on metal foils with the thin-film vapor-liquid-solid growth mode , 2014 .

[4]  J. Bockris,et al.  Photoelectrochemical evolution of hydrogen on p-indium phosphide , 1984 .

[5]  Nathan S Lewis,et al.  Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.

[6]  G. Bilger,et al.  Hydrogen evolution on platinum-coated p-silicon photocathodes , 1996 .

[7]  C. Battaglia,et al.  19 . 2 % E ffi cient InP Heterojunction Solar Cell with Electron-Selective TiO 2 Contact , 2014 .

[8]  Keiko Uemura,et al.  Photoelectrochemical reduction of CO(2) in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex. , 2010, Chemical communications.

[9]  Yu-Lun Chueh,et al.  p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. , 2012, Angewandte Chemie.

[10]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[11]  K. Schulte,et al.  Combined photoelectrochemical conditioning and photoelectron spectroscopy analysis of InP photocathodes. I. The modification procedure , 2002 .

[12]  Band‐edge absorption coefficients from photoluminescence in semiconductor multiple quantum wells , 1989 .

[13]  Joel W. Ager,et al.  High optical quality polycrystalline indium phosphide grown on metal substrates by metalorganic chemical vapor deposition , 2012 .

[14]  C. Battaglia,et al.  Role of TiO2 Surface Passivation on Improving the Performance of p-InP Photocathodes , 2015 .

[15]  Zhibin Yu,et al.  Morphological and spatial control of InP growth using closed-space sublimation , 2012 .

[16]  J. Y. Cheng,et al.  Low resistance Ohmic contact scheme (∼μΩ cm2) to p-InP , 1997 .

[17]  S. Boettcher,et al.  Solution-deposited F:SnO₂/TiO₂ as a base-stable protective layer and antireflective coating for microtextured buried-junction H₂-evolving Si photocathodes. , 2014, ACS applied materials & interfaces.

[18]  Joel W. Ager,et al.  A direct thin-film path towards low-cost large-area III-V photovoltaics , 2013, Scientific Reports.

[19]  Adam Heller,et al.  Hydrogen-Evolving Solar Cells , 1984, Science.

[20]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[21]  G. Pelous,et al.  Ohmic contacts to III V compound semiconductors: A review of fabrication techniques , 1983 .

[22]  Ali Javey,et al.  19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact , 2014, ACS photonics.

[23]  Christophe Ballif,et al.  Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. , 2013, Nano letters.

[24]  I. Oh,et al.  Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. , 2012, Nano letters.

[25]  An efficient photocathode for semiconductor liquid junction cells: 9.4% solar conversion efficiency with p-InP/VCl3-VCl2-HCl/C , 1980 .

[26]  Ib Chorkendorff,et al.  2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs , 2014 .

[27]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[28]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[29]  James R. McKone,et al.  Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. , 2013, Journal of the American Chemical Society.

[30]  A. Bard,et al.  The Concept of Fermi Level Pinning at Semiconductor/Liquid Junctions. Consequences for Energy Conversion Efficiency and Selection of Useful Solution Redox Couples in Solar Devices , 1980 .

[31]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[32]  Adam Heller Conversion of Sunlight into Electrical Power and Photoassisted Electrolysis of Water in Photoelectrochemical Cells , 1981 .

[33]  Anna N. Ivanovskaya,et al.  A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis , 2003 .

[34]  Michael Grätzel,et al.  Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst , 2014, Nature Communications.

[35]  Ib Chorkendorff,et al.  Using TiO2 as a conductive protective layer for photocathodic H2 evolution. , 2013, Journal of the American Chemical Society.

[36]  Jun Kubota,et al.  Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. , 2013, Journal of the American Chemical Society.

[37]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[38]  J. J. Yang,et al.  Electrical properties of epitaxial indium phosphide films grown by metalorganic chemical vapor deposition , 1981 .

[39]  Ib Chorkendorff,et al.  Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, Nature materials.

[40]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.