Energy based approach for shape parameter selection in radial basis functions collocation method
暂无分享,去创建一个
[1] J. Whitney,et al. Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .
[2] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces , 1971 .
[3] G. Smith,et al. Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .
[4] R. Franke. Scattered data interpolation: tests of some methods , 1982 .
[5] E. Kansa. MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .
[6] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[7] E. J. Kansa,et al. Multi-quadrics-a scattered data approximation scheme with applications to computational fluid dynamics-II , 1990 .
[8] Stefanos Vlachoutsis,et al. Shear correction factors for plates and shells , 1992 .
[9] J. Reddy. Mechanics of laminated composite plates and shells : theory and analysis , 1996 .
[10] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..
[11] H. Power,et al. A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations , 2002 .
[12] Victor Birman,et al. On the Choice of Shear Correction Factor in Sandwich Structures , 2000, Mechanics of Sandwich Structures.
[13] Gregory E. Fasshauer,et al. Newton iteration with multiquadrics for the solution of nonlinear PDEs , 2002 .
[14] Bengt Fornberg,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2004 .
[15] A. U.S.,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .
[16] G. R. Liu,et al. 1013 Mesh Free Methods : Moving beyond the Finite Element Method , 2003 .
[17] António J.M. Ferreira,et al. A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates , 2003 .
[18] A. Ferreira,et al. Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates , 2004 .
[19] Gui-Rong Liu,et al. An Introduction to Meshfree Methods and Their Programming , 2005 .
[20] Gregory E. Fasshauer,et al. Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method , 2006 .
[21] Bengt Fornberg,et al. The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..
[22] António J.M. Ferreira,et al. Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter , 2008 .
[23] Scott A. Sarra,et al. A random variable shape parameter strategy for radial basis function approximation methods , 2009 .
[24] C.M.C. Roque,et al. Numerical experiments on optimal shape parameters for radial basis functions , 2009 .
[25] Marco Gherlone,et al. A novel algorithm for shape parameter selection in radial basis functions collocation method , 2011 .
[26] Song Xiang,et al. Trigonometric variable shape parameter and exponent strategy for generalized multiquadric radial basis function approximation , 2012 .
[27] A. Cheng. Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation , 2012 .
[28] K. Shukla,et al. Buckling of laminated composite plates subjected to mechanical and thermal loads using meshless collocations , 2013 .
[29] Jaime Rodrigues,et al. An Improved Meshless Method for the Static and Vibration Analysis of Plates , 2013 .
[30] Long Chen. FINITE ELEMENT METHOD , 2013 .
[31] Sabine Fenstermacher,et al. Numerical Approximation Of Partial Differential Equations , 2016 .