Energy based approach for shape parameter selection in radial basis functions collocation method

[1]  J. Whitney,et al.  Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .

[2]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[3]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[4]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[5]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[6]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[7]  E. J. Kansa,et al.  Multi-quadrics-a scattered data approximation scheme with applications to computational fluid dynamics-II , 1990 .

[8]  Stefanos Vlachoutsis,et al.  Shear correction factors for plates and shells , 1992 .

[9]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[10]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[11]  H. Power,et al.  A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations , 2002 .

[12]  Victor Birman,et al.  On the Choice of Shear Correction Factor in Sandwich Structures , 2000, Mechanics of Sandwich Structures.

[13]  Gregory E. Fasshauer,et al.  Newton iteration with multiquadrics for the solution of nonlinear PDEs , 2002 .

[14]  Bengt Fornberg,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2004 .

[15]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[16]  G. R. Liu,et al.  1013 Mesh Free Methods : Moving beyond the Finite Element Method , 2003 .

[17]  António J.M. Ferreira,et al.  A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates , 2003 .

[18]  A. Ferreira,et al.  Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates , 2004 .

[19]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[20]  Gregory E. Fasshauer,et al.  Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method , 2006 .

[21]  Bengt Fornberg,et al.  The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..

[22]  António J.M. Ferreira,et al.  Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter , 2008 .

[23]  Scott A. Sarra,et al.  A random variable shape parameter strategy for radial basis function approximation methods , 2009 .

[24]  C.M.C. Roque,et al.  Numerical experiments on optimal shape parameters for radial basis functions , 2009 .

[25]  Marco Gherlone,et al.  A novel algorithm for shape parameter selection in radial basis functions collocation method , 2011 .

[26]  Song Xiang,et al.  Trigonometric variable shape parameter and exponent strategy for generalized multiquadric radial basis function approximation , 2012 .

[27]  A. Cheng Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation , 2012 .

[28]  K. Shukla,et al.  Buckling of laminated composite plates subjected to mechanical and thermal loads using meshless collocations , 2013 .

[29]  Jaime Rodrigues,et al.  An Improved Meshless Method for the Static and Vibration Analysis of Plates , 2013 .

[30]  Long Chen FINITE ELEMENT METHOD , 2013 .

[31]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .