Consistency result for a non monotone scheme for anisotropic mean curvature flow
暂无分享,去创建一个
[1] Jöran Bergh,et al. Interpolation Spaces: An Introduction , 2011 .
[2] Elie Bretin,et al. A modified phase field approximation for mean curvature flow with conservation of the volume , 2009, 0904.0098.
[3] L. Nikolova,et al. On ψ- interpolation spaces , 2009 .
[4] Régis Monneau,et al. Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics , 2008 .
[5] Harald Garcke,et al. On the parametric finite element approximation of evolving hypersurfaces in R3 , 2008, J. Comput. Phys..
[6] Harald Garcke,et al. A variational formulation of anisotropic geometric evolution equations in higher dimensions , 2008, Numerische Mathematik.
[7] Antonin Chambolle,et al. Convergence of an Algorithm for the Anisotropic and Crystalline Mean Curvature Flow , 2006, SIAM J. Math. Anal..
[8] C. M. Elliott,et al. Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.
[9] Chert,et al. Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .
[10] S. Osher,et al. Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.
[11] Ronald Fedkiw,et al. Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.
[12] J. Sethian,et al. FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .
[13] Steven J. Ruuth,et al. Convolution-Generated Motion and Generalized Huygens' Principles for Interface Motion , 2000, SIAM J. Appl. Math..
[14] Gerhard Dziuk,et al. DISCRETE ANISOTROPIC CURVATURE FLOW OF GRAPHS , 1999 .
[15] Harald Garcke,et al. A MultiPhase Field Concept: Numerical Simulations of Moving Phase Boundaries and Multiple Junctions , 1999, SIAM J. Appl. Math..
[16] P. Souganidis,et al. Threshold dynamics type approximation schemes for propagating fronts , 1999 .
[17] Harald Garcke,et al. Anisotropy in multi-phase systems: a phase field approach , 1999 .
[18] Steven J. Ruuth. Efficient Algorithms for Diffusion-Generated Motion by Mean Curvature , 1998 .
[19] Charles M. Elliott,et al. CONVERGENCE OF NUMERICAL SOLUTIONS TO THE ALLEN-CAHN EQUATION , 1998 .
[20] L. Ambrosio,et al. Geometric evolution problems, distance function and viscosity solutions , 1997 .
[21] Maurizio Paolini,et al. A quasi-optimal error estimate for a discrete singularly perturbed approximation to the prescribed curvature problem , 1997, Math. Comput..
[22] G. Bellettini,et al. Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .
[23] Michael Struwe,et al. Geometric evolution problems , 1995 .
[24] G. Barles,et al. A Simple Proof of Convergence for an Approximation Scheme for Computing Motions by Mean Curvature , 1995 .
[25] Maurizio Paolini,et al. Quasi-optimal error estimates for the mean curvature flow with a forcing term , 1995, Differential and Integral Equations.
[26] Maurizio Paolini. An efficient algorithm for computing anisotropic evolution by mean curvature , 1995 .
[27] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .
[28] G. Barles,et al. Front propagation and phase field theory , 1993 .
[29] L. Evans. Convergence of an algorithm for mean curvature motion , 1993 .
[30] P. Souganidis,et al. Phase Transitions and Generalized Motion by Mean Curvature , 1992 .
[31] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[32] Xinfu Chen,et al. Generation and propagation of interfaces for reaction-diffusion equations , 1992 .
[33] Maurizio Paolini,et al. Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter , 1992 .
[34] L. Evans,et al. Motion of level sets by mean curvature. II , 1992 .
[35] G. Barles,et al. Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.
[36] Yun-Gang Chen,et al. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .
[37] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[38] J. Cahn,et al. A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .