Consistency result for a non monotone scheme for anisotropic mean curvature flow

In this paper, we propose a new scheme for anisotropic motion by mean curvature in $\R^d$. The scheme consists of a phase-field approximation of the motion, where the nonlinear diffusive terms in the corresponding anisotropic Allen-Cahn equation are linearized in the Fourier space. In real space, this corresponds to the convolution with a kernel of the form \[ K_{\phi,t}(x) = \F^{-1}\left[ e^{-4\pi^2 t \phi^o(\xi)} \right](x). \] We analyse the resulting scheme, following the work of Ishii-Pires-Souganidis on the convergence of the Bence-Merriman-Osher algorithm for isotropic motion by mean curvature. The main difficulty here, is that the kernel $K_{\phi,t}$ is not positive and that its moments of order 2 are not in $L^1(\R^d)$. Still, we can show that in one sense the scheme is consistent with the anisotropic mean curvature flow.

[1]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[2]  Elie Bretin,et al.  A modified phase field approximation for mean curvature flow with conservation of the volume , 2009, 0904.0098.

[3]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[4]  Régis Monneau,et al.  Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics , 2008 .

[5]  Harald Garcke,et al.  On the parametric finite element approximation of evolving hypersurfaces in R3 , 2008, J. Comput. Phys..

[6]  Harald Garcke,et al.  A variational formulation of anisotropic geometric evolution equations in higher dimensions , 2008, Numerische Mathematik.

[7]  Antonin Chambolle,et al.  Convergence of an Algorithm for the Anisotropic and Crystalline Mean Curvature Flow , 2006, SIAM J. Math. Anal..

[8]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[9]  Chert,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .

[10]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[11]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[12]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[13]  Steven J. Ruuth,et al.  Convolution-Generated Motion and Generalized Huygens' Principles for Interface Motion , 2000, SIAM J. Appl. Math..

[14]  Gerhard Dziuk,et al.  DISCRETE ANISOTROPIC CURVATURE FLOW OF GRAPHS , 1999 .

[15]  Harald Garcke,et al.  A MultiPhase Field Concept: Numerical Simulations of Moving Phase Boundaries and Multiple Junctions , 1999, SIAM J. Appl. Math..

[16]  P. Souganidis,et al.  Threshold dynamics type approximation schemes for propagating fronts , 1999 .

[17]  Harald Garcke,et al.  Anisotropy in multi-phase systems: a phase field approach , 1999 .

[18]  Steven J. Ruuth Efficient Algorithms for Diffusion-Generated Motion by Mean Curvature , 1998 .

[19]  Charles M. Elliott,et al.  CONVERGENCE OF NUMERICAL SOLUTIONS TO THE ALLEN-CAHN EQUATION , 1998 .

[20]  L. Ambrosio,et al.  Geometric evolution problems, distance function and viscosity solutions , 1997 .

[21]  Maurizio Paolini,et al.  A quasi-optimal error estimate for a discrete singularly perturbed approximation to the prescribed curvature problem , 1997, Math. Comput..

[22]  G. Bellettini,et al.  Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .

[23]  Michael Struwe,et al.  Geometric evolution problems , 1995 .

[24]  G. Barles,et al.  A Simple Proof of Convergence for an Approximation Scheme for Computing Motions by Mean Curvature , 1995 .

[25]  Maurizio Paolini,et al.  Quasi-optimal error estimates for the mean curvature flow with a forcing term , 1995, Differential and Integral Equations.

[26]  Maurizio Paolini An efficient algorithm for computing anisotropic evolution by mean curvature , 1995 .

[27]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[28]  G. Barles,et al.  Front propagation and phase field theory , 1993 .

[29]  L. Evans Convergence of an algorithm for mean curvature motion , 1993 .

[30]  P. Souganidis,et al.  Phase Transitions and Generalized Motion by Mean Curvature , 1992 .

[31]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[32]  Xinfu Chen,et al.  Generation and propagation of interfaces for reaction-diffusion equations , 1992 .

[33]  Maurizio Paolini,et al.  Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter , 1992 .

[34]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[35]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[36]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[37]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[38]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .