Comparative distribution and invasion risk of snakehead (Channidae) and Asian carp (Cyprinidae) species in North America

As nonindigenous species are a major threat to global biodiversity, cost-effective management requires iden- tification of areas at high risk of establishment. Here we predict suitable environments of 14 high-profile species of nonindigenous snakehead (Channidae) and Asian carp (Cyprinidae) species in North America based upon ecological niche modelling and compare the driving environmental variables for the two fish groups. Snakeheads distributions were correlated with thermal factors, whereas those of Asian carps were related mainly to precipitation. Predicted suit- able ranges for these nonindigenous species can be divided into three main areas: Mexico and the southern United States (five species); Mexico and the United States up to ~35 °N (three species); and most of Mexico, continuous United States, and southern Canada (six species). For the province of Ontario, we combined the number and location of aquarium stores and live fish markets with predicted areas of suitable environments to identify areas at risk of introduction and establishment. We identified several watersheds draining into northwestern Lake Ontario as having the highest risk, highlighting the increased predictive value of this approach. Resume : Comme les poissons non indigenes representent une menace importante a la biodiversite globale, une gestion efficace du point de vue des couts requiert l'identification des zones ou le risque d'etablissement est eleve. Nous predi- sons ici les milieux adequats pour l'etablissement de 14 especes non indigenes bien connues de poissons-serpents (Channidae) et de carpes asiatiques (Cyprinidae) en Amerique du Nord d'apres la modelisation ecologique des niches et nous comparons les variables du milieu qui regissent l'etablissement des deux groupes de poissons. Les repartitions des poissons-serpents sont en correlation avec les facteurs thermiques, alors que celles des carpes asiatiques sont reliees surtout aux precipitations. Les aires adequates de repartition predites pour ces les poissons non indigenes se retrouvent dans trois regions principales: le Mexique et le sud des Etats-Unis (cinq especes), le Mexique et les Etats-Unis jusqu'a ~35°N (trois especes) et le Mexique presque dans son entier, les Etats-Unis continentaux et le sud du Canada (six es- peces). Pour l'Ontario, la combinaison du nombre et de l'emplacement des boutiques d'aquariophilie et des marches de poissons vivants, d'une part, et des regions predites a habitats convenables, d'autre part, permet d'identifier les zones a risque pour les introductions et les etablissements. Nous identifions plusieurs bassins versants qui se jettent dans le nord-ouest du lac Ontario comme etant a risque tres eleve; ces resultats soulignent la valeur predictive de notre metho- dologie.

[1]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[2]  F. P. Kapinos,et al.  Hydrologic unit maps , 1987 .

[3]  K. Liem Functional design of the air ventilation apparatus and overland excurions by teleosts , 1987 .

[4]  S. Dong,et al.  Comparative studies on the feeding selectivity of silver carp Hypophthalmichthys molitrix and bighead carp Aristichthys nobilis , 1994 .

[5]  Sarah H. Reichard,et al.  Predicting Invasions of Woody Plants Introduced into North America , 1997, Conservation Biology.

[6]  L. Severinghaus,et al.  Prayer animal release in Taiwan , 1999 .

[7]  A. Peterson,et al.  Sensitivity of distributional prediction algorithms to geographic data completeness , 1999 .

[8]  David R. B. Stockwell,et al.  The GARP modelling system: problems and solutions to automated spatial prediction , 1999, Int. J. Geogr. Inf. Sci..

[9]  B. J. Goodwin,et al.  Predicting Invasiveness of Plant Species Based on Biological Information , 1999 .

[10]  S. Ferson,et al.  Quantitative Methods for Conservation Biology , 2002, Springer New York.

[11]  M. D. Gupta Adaptation of the alimentary tract to feeding habits in four species of fish of the genus Channa , 2000 .

[12]  I. Cowx,et al.  Nonindigenous Fishes Introduced into Inland Waters of the United States , 2000 .

[13]  J. Elith Quantitative Methods for Modeling Species Habitat: Comparative Performance and an Application to Australian Plants , 2000 .

[14]  C. S. Guy,et al.  Spatiotemporal Variation in Density of Larval Bighead Carp in the Lower Missouri River , 2001 .

[15]  A. Peterson,et al.  Predicting Species Invasions Using Ecological Niche Modeling: New Approaches from Bioinformatics Attack a Pressing Problem , 2001 .

[16]  Will Black Carp Be the Next Zebra Mussel? , 2001, Science.

[17]  David R. B. Stockwell,et al.  Effects of sample size on accuracy of species distribution models , 2002 .

[18]  G. Quinn,et al.  Experimental Design and Data Analysis for Biologists , 2002 .

[19]  D. Lodge,et al.  An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  C. Kolar,et al.  Ecological Predictions and Risk Assessment for Alien Fishes in North America , 2002, Science.

[21]  A. Peterson,et al.  Niche Modeling Perspective on Geographic Range Predictions in the Marine Environment Using a Machine-learning Algorithm , 2003 .

[22]  A. Peterson,et al.  Niche Modeling and Geographic Range Predictions in the Marine Environment Using a Machine-learning Algorithm , 2003 .

[23]  A. Peterson Predicting the Geography of Species’ Invasions via Ecological Niche Modeling , 2003, The Quarterly Review of Biology.

[24]  K. Ganeshaiah,et al.  Predicting the potential geographical distribution of the sugarcane woolly aphid using GARP and DIVA-GIS , 2003 .

[25]  Robert P. Anderson,et al.  Evaluating predictive models of species’ distributions: criteria for selecting optimal models , 2003 .

[26]  James D. Williams,et al.  IDENTITY OF INTRODUCED SNAKEHEADS (PISCES, CHANNIDAE) IN HAWAI'I AND MADAGASCAR, WITH COMMENTS ON ECOLOGICAL CONCERNS , 2004 .

[27]  D. Lodge,et al.  Global hot spots of biological invasions: evaluating options for ballast–water management , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  A. Townsend Peterson,et al.  Predicting invasions of North American basses in Japan using native range data and a genetic algorithm , 2004 .

[29]  Robert I. Colautti,et al.  A neutral terminology to define ‘invasive’ species , 2004 .

[30]  E. Chilton,et al.  Biology and management of grass carp (Ctenopharyngodon idella, Cyprinidae) for vegetation control: a North American perspective , 1992, Reviews in Fish Biology and Fisheries.

[31]  Anthony Ricciardi,et al.  Invasion risks posed by the aquarium trade and live fish markets on the Laurentian Great Lakes , 2005, Biodiversity & Conservation.

[32]  Phil A. Graniero,et al.  BACKCASTING AND FORECASTING BIOLOGICAL INVASIONS OF INLAND LAKES , 2004 .

[33]  J. Rasmussen The Cal-Sag and Chicago Sanitary and Ship Canal: A Perspective on the Spread and Control of Selected Aquatic Nuisance Fish Species* Prepared by , 2004 .

[34]  J. Drake,et al.  The Potential Distribution of Zebra Mussels in the United States , 2004 .

[35]  James D. Williams,et al.  Snakeheads (Pisces, Channidae): A Biological Synopsis and Risk Assessment , 2004 .

[36]  A. Peterson,et al.  Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  James D. Williams,et al.  Black Carp: biological synopsis and risk assessment of an introduced fish , 2005 .

[38]  Daniel Simberloff,et al.  Introduced species policy, management, and future research needs , 2005 .

[39]  Jane Elith,et al.  The evaluation strip: A new and robust method for plotting predicted responses from species distribution models , 2005 .

[40]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[41]  D. Lodge,et al.  Scenarios of freshwater fish extinctions from climate change and water withdrawal , 2005 .

[42]  Thomas M. Orrell,et al.  The Northern Snakehead Channa argus (Anabantomorpha: Channidae), a non-indigenous fish species in the Potomac River, U.S.A , 2005 .

[43]  J. Ruesink Global Analysis of Factors Affecting the Outcome of Freshwater Fish Introductions , 2005 .

[44]  D. Chapman,et al.  Asian Carps of the Genus Hypophthalmichthys (Pisces, Cyprinidae) ― A Biological Synopsis and Environmental Risk Assessment , 2005 .

[45]  D. Simberloff The politics of assessing risk for biological invasions: the USA as a case study. , 2005, Trends in ecology & evolution.

[46]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[47]  E. Wiley,et al.  Ecological niche modeling as a predictive tool: silver and bighead carps in North America , 2006, Biological Invasions.

[48]  L. Herborg,et al.  Predicting invasion risk using measures of introduction effort and environmental niche models. , 2007, Ecological applications : a publication of the Ecological Society of America.

[49]  L. Herborg,et al.  Forecasting the potential distribution of the invasive tunicate Didemnum vexillum , 2009 .