Optical Absorption and Band Gap Reduction in (Fe1–xCrx)2O3 Solid Solutions: A First-Principles Study

We provide a detailed theoretical analysis of the character of optical transitions and band gap reduction in (Fe1–xCrx)2O3 solid solutions using extensive periodic model and embedded cluster calculations. Time-dependent density functional theory is used to calculate and assign optical absorption bands for x = 0.0, 0.5, and 1.0 and photon energies up to 5 eV. Consistent with recent experimental data, a band gap reduction of as much as 0.7 eV with respect to that of pure α-Fe2O3 is found. This result is attributed predominantly to two effects: (i) the higher valence band edge for x ≈ 0.5, as compared to those in pure α-Fe2O3 and α-Cr2O3, and (ii) the onset of Cr → Fe d–d excitations in the solid solutions. Broadening of the valence band due to hybridization of O 2p with Fe and Cr 3d states also contributes to band gap reduction.

[1]  N. Govind,et al.  Optical absorption and spectral photoconductivity in α-(Fe1−xCrx)2O3 solid-solution thin films , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[3]  F. Illas,et al.  Theoretical approaches to excited-state-related phenomena in oxide surfaces. , 2013, Chemical reviews.

[4]  Caitlin C. Bannan,et al.  Simulating Ru L3-edge X-ray absorption spectroscopy with time-dependent density functional theory: model complexes and electron localization in mixed-valence metal dimers. , 2013, The journal of physical chemistry. A.

[5]  T. Varga,et al.  Multiband optical absorption controlled by lattice strain in thin-film LaCrO3. , 2013, Physical review letters.

[6]  Yu Zhang,et al.  Core and valence excitations in resonant X-ray spectroscopy using restricted excitation window time-dependent density functional theory. , 2012, The Journal of chemical physics.

[7]  N. Govind,et al.  Linear-Response and Real-Time Time-Dependent Density Functional Theory Studies of Core-Level Near-Edge X-Ray Absorption. , 2012, Journal of chemical theory and computation.

[8]  V. Shutthanandan,et al.  Electrical transport properties of Ti-doped Fe2O3(0001) epitaxial films , 2011 .

[9]  A. Ohtomo,et al.  Band-gap narrowing in α-(CrxFe1-x)2O3 solid-solution films , 2011 .

[10]  A. Andersen,et al.  Visible Light Absorption of N-Doped TiO2 Rutile Using (LR/RT)-TDDFT and Active Space EOMCCSD Calculations , 2011 .

[11]  E. Carter,et al.  Optical excitations in hematite (α-Fe2O3) via embedded cluster models: A CASPT2 study , 2011 .

[12]  A. Shluger,et al.  Structure and properties of oxygen centers in CaF2 crystals from ab initio embedded cluster calculations , 2011 .

[13]  M. E. Casida,et al.  Progress in time-dependent density-functional theory. , 2011, Annual review of physical chemistry.

[14]  G. Henkelman,et al.  Hybrid density functional theory band structure engineering in hematite. , 2011, The Journal of chemical physics.

[15]  Niranjan Govind,et al.  Modeling Fast Electron Dynamics with Real-Time Time-Dependent Density Functional Theory: Application to Small Molecules and Chromophores. , 2011, Journal of chemical theory and computation.

[16]  C. Di Valentin,et al.  Copper impurities in bulk ZnO: a hybrid density functional study. , 2011, The Journal of chemical physics.

[17]  Fenggong Wang,et al.  Electronic and Structural Properties of WO3: A Systematic Hybrid DFT Study , 2011 .

[18]  L. Seijo,et al.  Ab initio theoretical study of luminescence properties of Pr3+-doped Lu2O3 , 2011 .

[19]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[20]  P. Ordejón,et al.  Real-Time TD-DFT Simulations in Dye Sensitized Solar Cells: The Electronic Absorption Spectrum of Alizarin Supported on TiO2 Nanoclusters. , 2010, Journal of chemical theory and computation.

[21]  Aron Walsh,et al.  Electronic, structural, and magnetic effects of 3d transition metals in hematite , 2010 .

[22]  I. Abarenkov,et al.  General Purpose Electrostatic Embedding Potential , 2010 .

[23]  K. Kowalski,et al.  Excitons in Potassium Bromide: A Study using Embedded Time-dependent Density Functional Theory and Equation-of-Motion Coupled Cluster Methods , 2009 .

[24]  N. D. de Leeuw,et al.  A theoretical investigation of alpha-Fe2O3-Cr2O3 solid solutions. , 2009, Physical chemistry chemical physics : PCCP.

[25]  P. Sushko,et al.  Oxygen vacancies in cubic ZrO2 nanocrystals studied by an ab initio embedded cluster method , 2008 .

[26]  S. Shi,et al.  Magnetism of Chromia from First-Principles Calculations , 2008, 0810.3938.

[27]  E. Moore First-principles study of the mixed oxide α − Fe Cr O 3 , 2007 .

[28]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[29]  J. Carrasco,et al.  Optical absorption and luminescence energies of F centers in CaO from ab initio embedded cluster calculations. , 2006, The Journal of chemical physics.

[30]  S. Stankic,et al.  Novel optical surface properties of Ca2+ -doped MgO nanocrystals. , 2005, Nano letters.

[31]  M. Frisch,et al.  Ab initio Ehrenfest dynamics. , 2005, The Journal of chemical physics.

[32]  W. H. Butler,et al.  Electronic and magnetic structure of transition-metal-doped α -hematite , 2005 .

[33]  J. Hafner,et al.  Ab initio study of the (0001) surfaces of hematite and chromia: Influence of strong electronic correlations , 2004 .

[34]  Jürgen Hafner,et al.  First-principles calculation of the structure and magnetic phases of hematite , 2004 .

[35]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[36]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[37]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[40]  David Feller,et al.  The role of databases in support of computational chemistry calculations , 1996, J. Comput. Chem..

[41]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[42]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[43]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[44]  Allen,et al.  Band gaps and electronic structure of transition-metal compounds. , 1985, Physical review letters.

[45]  Robert M. Hazen,et al.  Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars , 1980 .

[46]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[47]  K. W. Blazey The wavelength-modulated reflectivity of cr2O3 and its relation to the absorption spectrum of other Cr3+-containing insulators , 1972 .

[48]  R. Pentcheva,et al.  Energetic stability and magnetic coupling in (Cr1-xFex)(2)O-3: Evidence for a ferrimagnetic ilmenite-type superlattice from first principles , 2011 .

[49]  Kieron Burke,et al.  Basics of TDDFT , 2006 .

[50]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[51]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .