Development of quantitative measurement of fuel mass distribution using planar imaging technique

The quantified fuel mass distribution of a spray was obtained from laser induced fluorescence images with optical patternation. In the dense spray region, however, the emitted fluorescence signal is significantly attenuated in the path of the detector because of particle scattering. Thus, the fluorescence image obtained with a camera may be different from the true fluorescence image pattern. Therefore, we propose a method of finding the geometric mean of the intensities obtained with two cameras and apply it to a solid-cone spray. We also compared this optical patternation technique with other spray measurement techniques, such as, PDPA (Phase Doppler Particle Analyzer) and the mechanical patternator, to validate the accuracy of the proposed method. Results show that the quantified mass distribution of the optical patternator agrees well with those of the PDPA and the mechanical patternator. Hence, we can estimate the local mass distribution rapidly without determining the entire structure of the spray by using the geometric mean of the signals obtained from two cameras.