Limiting Exit Location Distributions in the Stochastic Exit Problem

Consider a two-dimensional continuous-time dynamical system, with an attracting fixed point S. If the deterministic dynamics are perturbed by white noise (random perturbations) of strength $\epsilon$, the system state will eventually leave the domain of attraction $\Omega$ of S. We analyze the case when, as $\epsilon\to0$, the exit location on the boundary $\partial\Omega$ is increasingly concentrated near a saddle point H of the deterministic dynamics. We show using formal methods that the asymptotic form of the exit location distribution on $\partial\Omega$ is generically non-Gaussian and asymmetric, and classify the possible limiting distributions. A key role is played by a parameter $\mu$, equal to the ratio $|\lambda_s(H)|/\lambda_u(H)$ of the stable and unstable eigenvalues of the linearized deterministic flow at H. If $\mu < 1$, then the exit location distribution is generically asymptotic as $\epsilon\to0$ to a Weibull distribution with shape parameter $2/\mu$, on the ${\cal O}(\epsilon^{\mu/2})$ ...

[1]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[2]  M. Polanyi,et al.  The Theory of Rate Processes , 1942, Nature.

[3]  Ronnie Kosloff,et al.  Dynamics of two-dimensional diffusional barrier crossing , 1987 .

[4]  Heinz Otto Kreiss Resonance for singular perturbation problems , 1981 .

[5]  G. Louchard The brownian excursion area: a numerical analysis , 1984 .

[6]  Robert S. Maier,et al.  Escape problem for irreversible systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Alexander Eizenberg,et al.  The exponential leveling and the Ventcel-Freidlin “minimal action” function , 1990 .

[8]  Johannes J. Duistermaat,et al.  Oscillatory integrals, lagrange immersions and unfolding of singularities , 1974 .

[9]  R. Bellman,et al.  The Riccati Equation , 1986 .

[10]  M. V. Day,et al.  Some regularity results on the Ventcel-Freidlin quasi-potential function , 1985 .

[11]  L. Arnold Stochastic Differential Equations: Theory and Applications , 1992 .

[12]  Z. Schuss,et al.  A Singular Perturbation Method for the Computation of the Mean First Passage Time in a Nonlinear Filter , 1982 .

[13]  Robert S. Maier Colliding Stacks: A Large Deviations Analysis , 1991, Random Struct. Algorithms.

[14]  Pieter P.N. de Groen The Singularly Perturbed Turning-Point Problem: A Spectral Approach , 1980 .

[15]  C. Caroli,et al.  Diffusion in a bistable potential: A systematic WKB treatment , 1979 .

[16]  Maier,et al.  Transition-rate theory for nongradient drift fields. , 1992, Physical review letters.

[17]  Marc Mangel,et al.  Barrier Transitions Driven by Fluctuations, with Applications to Ecology and Evolution , 1994 .

[18]  Yuri Kifer,et al.  On the principal eigenvalue in a singular perturbation problem with hyperbolic limit points and circles , 1980 .

[19]  Yuri Kifer,et al.  The asymptotic behavior of the principal eigenvalue in a singular perturbation problem with invariant boundaries , 1987 .

[20]  Bernard J. Matkowsky,et al.  On Boundary Layer Problems Exhibiting Resonance , 1975 .

[21]  A. M. Berezhkovskii,et al.  The rate constant in the kramers multidimensional theory and the saddle-point avoidance , 1989 .

[22]  M. V. Day,et al.  Recent progress on the small parameter exit problem , 1987 .

[23]  Bernard J. Matkowsky,et al.  Diffusion across characteristic boundaries with critical points , 1983 .

[24]  Donald L. Iglehart,et al.  Weak Convergence to Brownian Meander and Brownian Excursion , 1977 .

[25]  Mark A. Ratner,et al.  Diffusion theory of multidimensional activated rate processes: The role of anisotropy , 1989 .

[26]  C. Caroli,et al.  A WKB treatment of diffusion in a multidimensional bistable potential , 1980 .

[27]  D. Ludwig Persistence of Dynamical Systems under Random Perturbations , 1975 .

[28]  Roncadelli Computation of higher-order corrections to the semiclassical propagator. , 1994, Physical review letters.

[29]  A. Weiss A new technique for analyzing large traffic systems , 1986, Advances in Applied Probability.

[30]  Reichl,et al.  Stochastic chaos in a class or Fokker-Planck equations. , 1992, Physical review letters.

[31]  J. Leray,et al.  Théorie des perturbations et méthodes asymptotiques , 1972 .

[32]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[33]  J. A. Swanson,et al.  Frequency Factors in the Thermally Activated Process , 1961 .

[34]  Richard S. Larson Simulation of two-dimensional diffusive barrier crossing with a curved reaction path , 1986 .

[35]  Robert S. Maier Large Fluctuations in Stochastically Perturbed Nonlinear Systems: Applications in Computing , 1993, chao-dyn/9305009.

[36]  B. Matkowsky,et al.  The Exit Problem for Randomly Perturbed Dynamical Systems , 1977 .

[37]  Victor Pavlovich Maslov,et al.  Semi-classical approximation in quantum mechanics , 1981 .

[38]  Martin V. Day Cycling and skewing of exit measures for planar systems , 1994 .

[39]  P. Lancaster,et al.  Solutions of the Continuous and Discrete Time Algebraic Riccati Equations: A Review , 1991 .

[40]  Mark A. Shayman,et al.  A Geometric View of the Matrix Riccati Equation , 1991 .

[41]  Vadim N. Smelyanskiy,et al.  Observable and hidden singular features of large fluctuations in nonequilibrium systems , 1994 .

[42]  Lajos Takács On the Distribution of the Integral of the Absolute Value of the Brownian Motion , 1993 .

[43]  H. Jauslin,et al.  Nondifferentiable potentials for nonequilibrium steady states , 1987 .

[44]  Richard E. Barlow,et al.  Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .

[45]  Leiba Rodman,et al.  Matrices and indefinite scalar products , 1983 .

[46]  Donald Ludwig,et al.  Escape from Domains of Attraction for Systems Perturbed by Noise , 1981 .

[47]  Frank B. Knight,et al.  On the excursion process of Brownian motion , 1980 .

[48]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[49]  Maier,et al.  Effect of focusing and caustics on exit phenomena in systems lacking detailed balance. , 1993, Physical review letters.

[50]  Nancy Kopell,et al.  A Geometric Approach to Boundary Layer Problems Exhibiting Resonance , 1979 .

[51]  F. A. Howes,et al.  Singularly perturbed semilinear elliptic boundary value problems , 1979 .

[52]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[53]  Guy Louchard,et al.  KAC'S FORMULA, LEVY'S LOCAL TIME AND BROWNIAN EXCURSION , 1984 .

[54]  Martin V. Day,et al.  Large deviations results for the exit problem with characteristic boundary , 1990 .

[55]  Michael V Berry,et al.  Stokes surfaces of diffraction catastrophes with codimension three , 1990 .

[56]  Frank Moss,et al.  Noise in Nonlinear Dynamical Systems. Volume 2. Theory of noise induced processes in special applications , 1989 .

[57]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[58]  H. McKean,et al.  Excursions of a non-singular diffusion , 1963 .

[59]  Arnold L. Welti,et al.  Mean Time to Lose Lock for a Coherent Second-Order PN-Code Tracking Loop - The Singular Perturbation Approach , 1990, IEEE J. Sel. Areas Commun..

[60]  Peter Talkner,et al.  Mean first passage time and the lifetime of a metastable state , 1987 .

[61]  Ben-Zion Bobrovsky,et al.  Some results on the problem of exit from a domain , 1992 .

[62]  Vladimiro Mujica,et al.  Dynamics of multidimensional barrier crossing in the overdamped limit , 1991 .

[63]  Marc Mangel,et al.  Probability of Extinction in a Stochastic Competition , 1977 .

[64]  Robert Graham,et al.  Path integral formulation of general diffusion processes , 1977 .

[65]  Robert S. Maier,et al.  A scaling theory of bifurcations in the symmetric weak-noise escape problem , 1996 .

[66]  Bernard J. Matkowsky,et al.  A direct approach to the exit problem , 1990 .

[67]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[68]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[69]  Avner Friedman,et al.  Asymptotic behavior of the principal eigenfunction for a singularly perturbed Dirichlet problem , 1978 .

[70]  Dykman,et al.  Dissipative corrections to escape probabilities of thermal-nonequilibrium systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.